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MODELLING DEFAULT CORRELATIONS IN A TWO-FIRM MODEL
WITH DYNAMIC LEVERAGE RATIOS

CARL CHIARELLA†, CHI-FAI LO‡ AND MING XI HUANG⋆

Abstract. This article provides a generalized two-firm model of default correlation, based on

the structural approach that incorporates interest rate risk. In most structural models default

is driven by the firms’ asset dynamics. In this article, a two-firm model of default is instead

driven by the dynamic leverage ratios, which combines the measure of risks of the firms’ total

liabilities and assets. This article investigates analytical methods and numerical tools to solve

the two-dimensional first passage time problem with time-dependent parameters. We carry out

a comparative analysis of the impact of model parameters and provide some insights of their

effects on joint survival probabilities and default correlations.
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1. Introduction

Default correlations have been an important research area in credit risk analysis. There are

a number of approaches for credit risk modelling, for example, the Gaussian copula method,

the reduced-form approach and the structural approach. In the structural approach, default

happens when the firm value falls below a default threshold. For example the fundamental

model of Merton (1974) assuming that default could only happen at the maturity date of the

bond, was later modified by Black & Cox (1976) to allow default before the maturity date.

Longstaff & Schwartz (1995) combine the early default mechanism in Black & Cox (1976)
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and the stochastic interest rate model of Vasicek (1977). Their model also accommodates the

complicated liability structures and payoffs by deriving the solution as a function of a ratio of

the firm value to the bond payoff value. Instead of using a constant default threshold, Briys &

de Varenne (1997) consider a time-dependent default threshold and assume that it depends on

the risk-free interest rate.

Later developments by Collin-Dufresne & Goldstein (2001) and Hui, Lo & Huang (2006) con-

sider the stationary leverage ratio for modelling credit risk. Collin-Dufresne & Goldstein (2001)

assume that the default threshold changes dynamically over time, in particular, that the dy-

namics of the log-default threshold is mean-reverting. This setting captures the fact that firms

tend to issue debt when their leverage ratios fall below some target, and replace maturing debt

when their leverage ratios are above this target. Hui et al. (2006) generalize the Collin-Dufresne

& Goldstein (2001) model to consider the situation in which the target leverage ratio is time-

dependent. The bond pricing functions in Collin-Dufresne & Goldstein (2001) and Hui et al.

(2006) are in terms of the ratio of the default threshold to the firm value. The default threshold

is assumed as the total liabilities of the firm. For such a combined measure of the default risk of

the firm, Hui, Lo, Huang & Lee (2007) proposed a dynamic leverage ratio model, where default

is driven by the firm’s leverage ratio when it is above a certain level.

The aim of this article is to extend the dynamic leverage ratio model of Hui et al. (2007) to the

two-firm case so as to study the implications for default correlations. The two-firm model has

been proposed by Zhou (2001), who extends the one-firm model of Black & Cox (1976) to the

two-firm situation. In Zhou (2001) the arrival of the default is driven by firms’ asset values and

the short-term risk-free interest rate is deterministic. In contrast to Zhou (2001), the arrival of

default in the two-firm model in this article is driven by firms’ leverage ratios, and the risk-free

interest rate is stochastic. We also extend the methods and techniques applied in Hui et al.

(2007) for solving the first-passage-time problem in a two-dimensional situation. The third aim

of this article is to develop numerical schemes which apply more generally.

The reminder of this article is organized as follows. Section 2 reviews the dynamic leverage

ratio model of Hui et al. (2007), and the techniques used in Hui et al. (2007) for solving the first-

passage-time problem: the method of images and the time varying barrier technique for dealing
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with time-dependent parameters. Section 3 extends the dynamic leverage ratio model to the

two-firm situation for valuation of default correlations. Section 4 shows the numerical results

of the impact on joint survival probabilities and default correlations for a range of different

scenarios, for example, different correlation levels, drift rates, volatilities and initial leverage

ratios. Section 5 concludes.

2. The Hui et al. (2007) Model

The Hui et al. (2007) model assumes that corporate bond prices depend on a firm’s leverage

ratio and the risk-free interest rate. The leverage ratio L is assumed the ratio of the firm’s

total liability to the firm value. The leverage ratio is assumed to follow the geometric Brownian

motion

dL = µL(t)Ldt + σL(t)LdZL, (1)

where µL(t) and σL(t) are the time dependent drift rate and the volatility of the proportional

change in the leverage ratio, respectively and ZL is a Wiener process under the historical

measure P. The dynamics of the risk-free interest rate is assumed to be given by the Hull &

White (1990) model, so that

dr = κr(t) [θr(t)− r] dt+ σr(t)dZr, (2)

where the risk-free interest r is mean-reverting to the long-run mean θr(t) at speed κr(t), σr(t)

is the instantaneous volatility of interest rate changes and Zr is a Wiener process under the

historical measure P.

The Wiener increments dZL and dZr are assumed to be correlated with1

E[dZLdZr] = ρLr(t)dt. (3)

In Hui et al. (2007), default occurs when the firm’s leverage ratio rises above a predefined

level L̂ at anytime during the life of the bond, and bondholders receive nothing upon default.

1An explicit expressions of the parameters µL(t), σL(t) and the correlation coefficient ρLr relating these to the
firm value, the firm’s total liabilities and interest rate processes can be found in Hui et al. (2006).
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Otherwise, bondholders receive the par value of the bond at the maturity T . Applying the

arbitrage pricing argument, the corporate bond price P (L, r, t) is given by

− ∂P

∂t
=

1

2
σ2
L(t)L

2∂
2P

∂L2
+ µ̃L(t)L

∂P

∂L
+ ρLr(t)σL(t)σr(t)L

∂2P

∂L∂r

+
1

2
σ2
r (t)

∂2P

∂r2
+ κr(t)[θ̃r(t)− r]

∂P

∂r
− rP, (4)

for t ∈ (0, T ), L ∈ (0, L̂) and subject to the boundary conditions

P (L, r, T ) = 1, P (L̂, r, t) = 0. (5)

Here

µ̃L(t) = µL(t)− λLσL(t), θ̃r(t) = θr(t)−
λrσr(t)

κr(t)
, (6)

where λL and λr are the market prices of risk2 of the leverage ratio and interest rate processes,

respectively.

Hui et al. (2007) employed the separation of variables method to simplify the problem (4) by

setting

P (L, r, t) = B(r, t)P̂ (L, t), (7)

where B(r, t) is the risk-free bond price, P̂ (L, t) is a function defined on L < L̂ in a period of

T and it satisfies the partial differential equation3

− ∂P̂

∂t
=

1

2
σ2
L(t)L

2∂
2P̂

∂L2
+ [µ̃L(t) + ρLr(t)σL(t)σr(t)b(t)]L

∂P̂

∂L
, (8)

subject to the boundary conditions

P̂ (L, T ) = 1, P̂ (L̂, t) = 0. (9)

2There are no explicit expressions of the market prices of risk in Hui et al. (2007), and here we simply assume
they are constant.
3Note that the fact that the drift of the dynamic leverage ratio does not depend on the risk-free interest rate
allows the separation of variables technique to work in this situation. A derivation of (8) can be found in the
Appendix of Hui et al. (2007). Under the risk-neutral measure, the growth rates of the firm’s asset value and the
firm’s total liabilities equal the risk-free interest rate, as a result µ̃L(t) is independent on the risk-free interest
rate.
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Equation (8) can be transformed further to a simpler form by using the normalized log-leverage

ratio x = ln(L/L̂), and τ = T − t the time-to-maturity. Set P̂ (L̂ex, t) equal to P̄ (x, τ), then

P̄ (x, τ) satisfies the partial differential equation

∂P̄

∂τ
=

1

2
σ2
L(τ)

∂2P̄

∂x2
+ γ(τ)

∂P̄

∂x
, (10)

for τ ∈ (0, T ), x ∈ (∞, 0) and subject to the boundary conditions

P̄ (x, 0) = 1, (11)

P̄ (0, τ) = 0, (12)

where

γ(τ) = µ̃L(τ) + ρLr(τ)σL(τ)σr(τ)b(τ)−
1

2
σ2
L(τ). (13)

The its solution can be written as

P̄ (x, τ) =

∫ 0

−∞
f(x, y; τ)P̄ (y)dy, (14)

where P̄ (x, 0) ≡ P̄ (y) is the initial condition function which is given in (11), f(x, y; τ) is the

transition probability density function for x starting at the value x(0) = y at τ = 0 and ending

at the value x at τ , and it is subject to the zero boundary condition in (12).

2.1. The Method of Images for Constant Coefficients.

It is the boundary condition (12) that gives defaultable bond pricing problems its particular

structure and difficulty. This is essentially a barrier type condition and in one form or another

requires the solution of the first passage time4 problem associated with the partial differential

equation (10). To solve this type of problem, Hui et al. (2007) apply the method of images

approach. When the model parameters are constant and ρLr = 0, that is σL(τ) = σL and

4In statistics, the first passage time is the time when a stochastic process first enters a threshold state. Here
the first passage time is the first time x crosses the barrier at x = 0.
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γ(τ) = γ, the exact solution of the transition probability density function is5

f(x, y; τ) = exp
{
− γ

σ2
L

(x− y)− γ2

2σ2
L

τ
} [

g(x, y; σ2
Lτ)− g(x,−y; σ2

Lτ)
]
, (15)

where

g(x, y; v) =
e−(x−y)2/2v

√
2πv

. (16)

Albanese & Campolieti (2006) use an alternative approach of the reflection principle to obtain

the transition probability density function, and show that it is indeed the same transition prob-

ability density function for the survival probability for the absorption not yet having occurred

during a period of time ξ = t− t0, that is

F (x, ξ) =

∫ 0

−∞
f(x, y; σ2

Lξ)dy. (17)

2.2. The Method of Images for Time Varying Coefficients.

If the coefficients in the partial differential equation (10) are time-dependent, the application

of the method of images will not be as straight forward as in the constant coefficients case.

Indeed, the exact solution P̄ (x, τ) cannot be solved by applying the method of images, instead,

an approximate solution can be obtained. Hui et al. (2007) apply a simple approach that was

developed by Lo, Lee & Hui (2003) to construct an approximate solution, namely P̄β(x, τ),

which satisfies the partial differential equation (10) and subject to the initial condition (11).

The approach of Lo et al. (2003) is to set the zero boundary condition of P̄β(x, τ) at a time

varying barrier, namely x∗(τ), which is along the normalized log-leverage ratio x-axis, that is

P̄β(x
∗(τ), τ) = 0. (18)

The dynamic form of x∗(τ) is assumed to be

x∗(τ) = −
∫ τ

0

γ(v)dv − β

∫ τ

0

σ2
L(v)dv, (19)

5See Appendix A for the proof.
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where β is a real parameter, which may be chosen in some optimal way so as to minimize the

deviation between the time varying barrier x∗(τ) and the exact barrier at x = 0.

By applying the method of images, the approximate solution is

P̄β(x, τ) =

∫ 0

−∞
fβ(x, y; τ)P̄β(y)dy, (20)

where P̄β(y) = 1 at τ = 0 is the initial condition, and fβ(x, y; τ) is the transition probability

density function for the process restricted to the region x ∈ (−∞, x∗(τ)) and has the form6

fβ(x, y, τ) = exp
{
β
[
x− y − x∗(τ)

]
− 1

2
β2

∫ τ

0

σ2
L(v)dv

}

×
[
g
(
x− x∗(τ), y;

∫ τ

0

σ2
L(v)dv

)
− g
(
x− x∗(τ),−y;

∫ τ

0

σ2
L(v)dv

)]
. (21)

The survival probability for the absorption not yet having occurred during a period of time

ξ = t− t0 is thus

Fβ(x, ξ) =

∫ 0

−∞
fβ(x, y; ξ)dy. (22)

Note that the accuracy of the approximate solution depends on choosing the values of β. Lo

et al. (2003) illustrate certain forms of β that provide accurate results, for example by setting

x∗(0) = x∗(T ) = 0. A particular form of β can be obtained according to (19), so that

β = −
∫ T

0
γ(v)dv

∫ T

0
σ2
L(v)dv

. (23)

Other methodologies of choosing the optimal values of β are discussed in Lo et al. (2003).

3. Modelling Default Correlations in A Two-Firm Model

3.1. Default Correlations.

6See Appendix B for the proof.
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Default correlation measures the likelihood of firms defaulting together. The mathematical

interpretation of default correlation by Zhou (2001) is

ρD =
JPD − PD1PD2√

PD1(1− PD1)
√

PD2(1− PD2)
, (24)

where JPD is the joint default probability of the two firms i = 1, 2 and PDi are individual

default probabilities of the two firms.

Default correlation in (24) can be explained as the normalized difference between both firms

default at the same time when they are correlated and both firms default at the same time

when they are uncorrelated.

To solve (24), individual default probabilities can be obtained by solving equations (17) and

(22). The JPD can be expressed in terms of joint survival probability, JSP according to

JPD = JSP− 1 + PD1 + PD2, (25)

where JSP will be determined in the following section.

3.2. A Two-Firm Model with Dynamic Leverage Ratios.

To valuate the joint survival probability of two firms, we consider a financial instrument -

credit linked note (CLN) that it exposed to the default risk of the note issuer and the reference

asset. A credit linked note allows the issuer to transfer the credit risk of holding a bond to the

investors. If the bond issuer (or the“reference obligor”) is solvent, the note issuer is obligated

to pay to the note-holders the note face value at the maturity. If the reference obligor goes

bankrupt, the note-holders receive a recovery rate or in the worst case they receive nothing.

The note-holders are also exposed to the default risk of the note issuer. Therefore, the price

of the note is linked to the performance of the reference asset and the default risk of the note

issuer. To model the CLN, we extend the Hui et al. (2007) dynamic leverage ratio model to

the two firm situation and incorporate the stochastic risk-free interest rate.
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Let L1 and L2 denote respectively the leverage ratios of the note issuer and the reference obligor,

and assume that they follow the dynamics

dLi = µiLidt + σiLidZi, (i = 1, 2), (26)

where µi and σi denote the constant drift rate and volatility of the proportional change in

leverage ratios respectively, and Z1 and Z2 are Wiener processes under the historical measure

P. The Wiener increments dZ1 and dZ2 are assumed to be correlated with

E[dZ1dZ2] = ρ12dt, (27)

where ρ12 denotes the correlation coefficient of the proportional leverage ratio level of the two

firms.

Let the dynamics of the instantaneous spot rate of interest follow the Vasicek (1977) process

dr = κr (θr − r) dt+ σrdZr, (28)

where the instantaneous spot rate of interest r is mean-reverting to the constant long-term

mean θr at constant speed κ and Zr is a Wiener process under the historical measure P. The

Wiener processes Zi and Zr are correlated with

E[dZidZr] = ρirdt, (i = 1, 2), (29)

where ρir denotes the correlation coefficient between the proportional changes of the leverage

ratio level of firm i and the instantaneous spot rate of interest.

Assume default(s) occur anytime during the life of the credit linked note when either firm’s

leverage ratio rises above a predefined default threshold L̂i, that is Li ≥ L̂i. If both firms’

leverage ratios never reach L̂i, the note holder receives the face value, which is assumed equal

to unity. If default occurs, the firm defaults on all of its obligations immediately, and the note

holder receives nothing (that is there is no recovery) upon default of either firm7.

7There could be a recovery payment if the default event happens. However, the assumption of zero recovery
captures the worst situation in which investors lose all their investment on credit linked notes. The framework
can easily be adjusted to handle the case of some residual recovery rate.
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Let P (L1, L2, r, t) be the price of credit linked note and applying the arbitrage pricing argument,

the partial differential equation for the price is given by

− ∂P (L1, L2, r, t)

∂t
=

1

2
σ2
1L

2
1

∂2P

∂L2
1

+
1

2
σ2
2L

2
2

∂2P

∂L2
2

+
1

2
σ2
r

∂2P

∂r2
+ ρ12σ1σ2L1L2

∂2P

∂L1∂L2

+ρ1rσ1σrL1
∂2P

∂L1∂r
+ ρ2rσ2σrL2

∂2P

∂L2∂r

+µ̃1L1
∂P

∂L1
+ µ̃2L2

∂P

∂L2
+ κr[θ̃r − r]

∂P

∂r
− rP. (30)

on the interval Li ∈ (0, L̂i) (i=1,2), t ∈ (0, T ) and subject to the boundary conditions

P (L1, L2, r, T ) = 1, (31)

P (L̂1, L2, r, t) = 0, (32)

P (L1, L̂2, r, t) = 0. (33)

The parameters µ̃i and θ̃r incorporate the market prices of risk, λi, λr (assumed to be constant),

associated with leverage ratios and interest rate processes respectively and are defined as

µ̃i = µi − λiσi, (i = 1, 2), (34)

θ̃r = θr −
λrσr
κr

. (35)

Extending the method of separation of variables used in Hui et al. (2007) to the two-firm case,

we seek to express the credit linked note price in the separable form

P (L1, L2, r, t) = B(r, t)P̂ (L1, L2, t), (36)

where B(r, t) is the risk-free bond price, and P̂ (L1, L2, t) satisfies

− ∂P̂

∂t
=

1

2
σ2
1L

2
1

∂2P̂

∂L2
1

+ ρ12σ1σ2L1L2
∂2P̂

∂L1∂L2
+

1

2
σ2
2L

2
2

∂2P̂

∂L2
2

+ [µ̃1 + ρ1rσ1σrb(t)]L1
∂P̂

∂L1
+ [µ̃2 + ρ2rσ2σrb(t)]L2

∂P̂

∂L2
, (37)
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subject to the boundary conditions

P̂ (L1, L2, T ) = 1, (38)

P̂ (L̂1, L2, t) = 0, (39)

P̂ (L1, L̂2, t) = 0. (40)

In (37) b(t) is a time-dependent parameter depending on the speed of mean reversion of the

spot rate of interest given by

b(t) =
e−κr(T−t) − 1

κr
. (41)

Define the volatility adjusted log-leverage ratios

Xi = ln(Li/L̂i)/σi, (42)

and denote P̂ (L̂1e
σ1X1, L̂2e

σ2X2 , t) by P̄ (X1, X2, τ), so that in terms of time-to-maturity variable

τ = T − t, the partial differential equation (37) becomes

∂P̄

∂τ
=

1

2

∂2P̄

∂X2
1

+ ρ12
∂2P̄

∂X1∂X2
+

1

2

∂2P̄

∂X2
2

+ γ1(τ)
∂P̄

∂X1
+ γ2(τ)

∂P̄

∂X2
, (43)

on the interval of Xi ∈ (−∞, 0) (i=1,2), τ ∈ (0, T ) and subject to the boundary conditions

with a new notation that Xi(0) = Yi (i=1,2) at time-to-maturity τ = 0

P̄ (Y1, Y2) ≡ P̄ (X1, X2, 0) = 1, (44)

P̄ (0, X2, τ) = 0, (45)

P̄ (X1, 0, τ) = 0. (46)

The drift coefficients γi(τ) in (43) are defined as

γi(τ) = [µ̃i + ρirσiσrb(τ)− σ2
i /2]/σi, (i = 1, 2). (47)
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The solution to the partial differential equation (43) is given by the integral

P̄ (X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
f(X1, X2, Y1, Y2; τ)P̄ (Y1, Y2)dY1dY2, (48)

where f(X1, X2, Y1, Y2; τ) is the transition probability density function for transition from the

values X1(0) = Y1 and X1(0) = Y2 at time-to-maturity τ = 0 below the barriers to the values

X1 and X2 at time-to-maturity τ within the region X1 ∈ (−∞, 0) and X2 ∈ (−∞, 0).

3.3. Method of Images for Constant Coefficients at Certain Values of ρ12.

The zero boundary conditions in (45)-(46) requires the solution of the first passage time prob-

lem8 associated with the partial differential equation (43). To solve this problem, Appendix

Cextends the method of images to the two-dimensional heat equation when it is subject to zero

boundary conditions. In order to apply the solution in Appendix C, we assume that the partial

differential equation (43) has constant coefficients, that is we set ρir = 0, then drift terms are

no longer time-dependent, that is

γi = [µ̃i − σ2
i /2]/σi, (i = 1, 2). (49)

Next, we transform the partial differential equation (43) with constant coefficients to the two-

dimensional heat equation as illustrated in Appendix D. The exact solution for the transition

probability density function f is thus given by

f(X1, X2, Y1, Y2; τ) = exp
{
η1(X1 − Y1) + η2(X2 − Y2) + ξτ

}

×
[
g(X1, X2, Y1, Y2; τ) +

m∑

k=1

(−1)kgk(X1, X2, Y
k
1 , Y

k
2 ; τ)

]
, (50)

where g is the bivariate transition probability density function for transition from y1, y2 to x1, x2

in time period τ , and has the form

g(x1, x2, y1, y2; τ)

=
1

2πτ
√

1− ρ212
exp

{
−(x1 − y1)

2 − 2ρ12(x1 − y1)(x2 − y2) + (x2 − y2)
2

2τ(1− ρ212)

}
, (51)

8Here the first passage time is the first time Xi (i=1,2) crosses the barrier at Xi = 0.
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with

η1 =
γ2ρ12 − γ1
1− ρ212

, η2 =
γ1ρ12 − γ2
1− ρ212

, (52)

ξ = −
(
1
2
γ21 − ρ12γ1γ2 +

1
2
γ22
)

1− ρ212
. (53)

Note that gk is equivalent to g, the superscript representing the bivariate transition probability

density function obtained from the kth image by the method of images approach.

Here m is the total number of images used to form a closed-loop in such a way that the desired

boundary conditions at X1 = 0 and X2 = 0 are preserved, as explained in Appendix D . The

Y k
1 and Y k

2 are obtained recursively from the relations between successive images

Y k
1 =





−Y k−1
1 for odd k,

Y k−1
1 − 2ρ12Y

k−1
2 for even k,

(54)

Y k
2 =





Y k−1
2 − 2ρ12Y

k−1
1 for odd k ,

−Y k−1
2 for even k ,

(55)

where

Y 1
1 = −Y1, Y 1

2 = Y2 − 2ρ12Y1. (56)

Denote F (X1, X2, ξ) by the joint survival probability of absorption not yet having occurred

during a period of time ξ = t− t0, that is

F (X1, X2, ξ) =

∫ 0

−∞

∫ 0

−∞
f(X1, X2, Y1, Y2; ξ)dY1dY2, (57)

where f(X1, X2, Y1, Y2; ξ) satisfies the same partial differential equation of P̄ as in (43). Note

that the solution (50) is obtained by applying the method of images and is valid for the values

of ρ12 given in Table 1, see Appendix E for the proof.

3.4. Method of Images for Time Varying Coefficients at Certain Values of ρ12.

If the coefficients in the partial differential equation (43) are time-dependent, we extend the

approach of Lo et al. (2003) discussed in Subsection 2.2 to the two-firm case. Denote by P̄β
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Total no. of images m ρ12 Values of ρ12
3 − cos π

2
0

5 − cos π
3

-0.5
7 − cos π

4
-0.707

9 − cos π
5

-0.809
: : :
13 − cos π

7
-0.901

: : :
m − cos 2π

(m+1)
:

Table 1. The relation between the number of images m required to form the “closed-
loop” and the corresponding value of ρ12.

the approximate solution to the exact solution P̄ of the partial differential equation (43) and

satisfing the same partial differential equation, that is

∂P̄β

∂τ
=

1

2

∂2P̄β

∂X2
1

+ ρ12
∂2P̄β

∂X1∂X2

+
1

2

∂2P̄β

∂X2
2

+ γ1(τ)
∂P̄β

∂X1

+ γ2(τ)
∂P̄β

∂X2

. (58)

The zero boundary conditions P̄β are assumed to be

P̄β(X
∗
1 (τ), X2, τ) = 0, (59)

P̄β(X1, X
∗
2 (τ), τ) = 0, (60)

where X∗
1 (τ) and X

∗
2 (τ) are time varying barriers along the X1-axis and X2-axis respectively.

Now X1 and X2 are restricted to the region X1 ∈ (−∞, X∗
1 (τ)) and X2 ∈ (−∞, X∗

2 (τ)).

Applying a similar approach as in Subsection 2.2, the time varying barriers are given by

X∗
i (τ) = −

∫ τ

0

γi(v)dv − βiτ, (i = 1, 2). (61)

Two real adjustable constants β1 and β2 control the shape of the time varying barriers X∗
1 (τ)

and X∗
2 (τ) and are chosen so that they remains as close as possible to the exact barrier X1 = 0

and X2 = 0 respectively.

The solution for P̄β can be written as

P̄β(X1, X1, τ) =

∫ 0

−∞

∫ 0

−∞
fβ(X1, X2, Y1, Y2; τ)P̄β(Y1, Y2)dY1dY2, (62)
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where P̄β(Y1, Y2) = 1 at τ = 0 is the initial condition, and fβ(X1, X2, Y1, Y2; τ) is the joint tran-

sition probability density function for the processes restricted to the region Xi ∈ (−∞, X∗
i (τ))

(i=1,2) and has the form

fβ(X1, X2, Y1, Y2; τ) =

eη̄1[X1−X∗

1 (τ)−Y1]+η̄2[X2−X∗

2 (τ)−Y2]+ξ̄τ
[
g(X1 −X∗

1 (τ), X2 −X∗
2 (τ), Y1, Y2; τ)

+

m∑

k=1

(−1)kgk(X1 −X∗
1 (τ), X2 −X∗

2 (τ), Y
k
1 , Y

k
2 ; τ)

]
, (63)

where η̄1, η̄2 and ξ̄ are constants given by (see Appendix F for the proof.)

η̄1 =
−β2ρ12 + β1

1− ρ212
, η̄2 =

−β1ρ12 + β2
1− ρ212

, (64)

ξ̄ = −
1
2
β2
1 − ρ12β1β2 +

1
2
β2
1

1− ρ212
. (65)

Then the corresponding joint survival probability Fβ(X1, X2, ξ) for absorption has not yet

occurred during the period of time ξ = t− t0, is given by

Fβ(X1, X2, ξ) =

∫ 0

−∞

∫ 0

−∞
fβ(X1, X2, Y1, Y2; ξ)dY1dY2. (66)

We note that the solutions (57) and (66) can be expressed in terms of the cumulative bivariate

normal distribution function N2(·). Appendix G of Chiarella, Lo & Huang (2012) illustrates the

implementation of (57) and (66) in terms of N2(·), where the computation of the joint survival

probabilities is done in efficient and accurate way. A range of different analytical approximate

methods have been proposed for the evaluation of N2(·). In this article, we apply the widely

cited Drezner (1978) method, which is based on direct computation of the double integral by

the Gauss quadrature method9.

We emphasize that the solutions (50) and (63) obtained by applying method of images are only

valid for the particular values of the correlation coefficient ρ12 shown in Table 1. In the next

subsection we will develop numerical methods to solve the problem for all values of ρ12.

9For more details of this method and a comparison of speed and accuracy to other approximate methods, see
Agca & Chance (2003).
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Figure 1. A path of x1(t) across a typical subintervals.

3.5. Alternative Methodologies for General Values of ρ12.

We apply the alternating direction implicit method for two-dimensional partial differential

equations. We consider the partial differential equation (43), which has a cross-derivative term

and time-dependent drift terms. In order to develop an efficient numerical solution, we consider

alternating direction implicit (ADI) schemes that are unconditionally stable, that is the they

are stable without any restriction on the time step. A recent study conducted by in’t Hout

& Welfert (2007) showed that the finite difference schemes introduced by Douglas & Rachford

(1956) is unconditionally stable in applications to two-dimensional partial differential equation

equations with a cross-derivative term and drift terms. Therefore, we apply this scheme to

solve the partial differential equation (43). An outline of the scheme is in Appendix I.

We also develop a Monte Carlo (MC) scheme as a benchmark. Consider the partial differen-

tial equation (43), then by Feynman-Kac formula, the associated linked stochastic differential

equations are

dL1 = [µ̃1 + ρ1rσ1σrb(t)]L1dt+ σ1L1dZ̃1, (67)

dL2 = [µ̃2 + ρ2rσ2σrb(t)]L2dt+ σ2L2dZ̃2, (68)

where Z̃1 and Z̃2 are Wiener processes under the risk-neutral measure P̃, and the Wiener

increments dZ̃1 and dZ̃2 are correlated with E[dZ̃1dZ̃2] = ρ12dt.
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We rewrite (67) and (68) in terms of uncorrelated Wiener processes W1, W2, and change

variables to the normalized log-leverage ratios xi = ln(Li/L̂i), then (67) and (68) become

dx1 =

[
µ̃1 + ρ1rσ1σrb(t)−

1

2
σ2
1

]
dt+ σ1dW1, (69)

dx2 =

[
µ̃2 + ρ2rσ2σrb(t)−

1

2
σ2
2

]
dt+ σ2

(
ρ12dW1 +

√
1− ρ212dW2

)
. (70)

Default occurs any time in the time interval t ∈ (0, T ) if either firm’s leverage ratio Li is on

or above the default threshold L̂i (that is x1 ≥ 0 or x2 ≥ 0). Therefore, to ensure that default

events are captured, the simulation time step ∆t should be as small as possible. For example,

Figure 1 shows that, if ∆t = t2 − t1, and the barrier is breached at t∗(t1 < t∗ < t2) the default

event will not be captured, and, a smaller ∆t = t∗ − t1 would be required. The details of the

Monte Carlo scheme for valuation the joint survival probability are discussed in Appendix J.

4. Numerical Results

This section will show some numerical results on joint survival probabilities, default correlations

and the price of the credit linked note. We choose the set of parameters to be consistent with

Hui et al. (2007), so allowing us to compare the effect of going from a one-firm model to a

two-firm model. It is quite natural to set the default threshold at L̂1 = L̂2 = 1, to reflect the

fact that the firm’s debt level is equal to its asset level. This is equivalent to what is done by

Collin-Dufresne & Goldstein (2001) where default occurs when the log-leverage ratio hits the

barrier at zero. A firm can be also forced to default when its debt level is close to its asset level,

for example 90% (L̂i = 0.9), or higher than its asset level at 110% (L̂i = 1.1). However the

framework of the two-firm model can handle these more general situations, because the model

is formulated in terms of the normalized log-leverage ratios, i.e. ln(Li/L̂i).

The leverage ratios used for different individual ratings are the typical values of industry me-

dians given by Standard & Poors (2001). Following the same setting in Hui et al. (2007), the

values of the volatility of leverage ratios are assumed to be similar to asset volatilities10, the

10This follows from the assumption that volatilities of firms’ liabilities are not significant, as can be seen from the
mathematical relationship between volatilities of leverage ratio, firm’s asset values and liabilities in Appendix
A of Hui et al. (2006). Under this assumption the volatility of the leverage ratio is then close to the volatility
of the firm asset value.
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Credit Rating AAA AA A BBB BB B CCC

Leverage ratios Li (%) 3.1 9.5 17.2 31.5 49.5 53.8 73.2

Volatilities σi 0.127 0.156 0.184 0.213 0.241 0.270 0.299

Table 2. Parameters used for individual ratings.

values of which are close to the estimates of Delianedis & Geske (1999), who observed that the

volatility value is 0.17 for AA and A-rated firms and 0.27 for B-rated firms. Taking these values

as reference points, volatilities for other rating categories can be tabulated for each successive

rated category. The values of leverage ratios and volatilities used for different individual ratings

are shown in Table 2 which is reproduced from Table 1 of Hui et al. (2007).

The time horizon is fifteen years which is the same as in Hui et al. (2007), who compared

the individual default probabilities to S&P historical cumulative default rates for which the

available data is up to fifteen years.

We evaluate the joint survival probabilities based on the alternating direction implicit scheme

outlined in Appendix I. The spatial steps used are ∆x = 8.47E-03 and ∆y = 6.03E-03 and the

time step used is ∆t = 0.01. The accuracy of this setting will be discussed in the following

subsection and it is seen to result in a reasonable level of accuracy (error < 1% except at fifteen

years where the error is around 1.3%).

The default correlations are evaluated based on the equation given in (24). The individual

default probabilities are computed by using equation (17) for the case of constant coefficients

and equation (22) for the case of time-varying coefficients. Note that all the valuations here

are under the risk-neutral measure.

In the following subsections, we first investigate the accuracy of using different numerical meth-

ods; we then study the impact on joint survival probabilities and default correlations of a range

of different scenarios, for example, paired firms having different credit quality, different values

for correlation coefficients, drift levels, volatilities and initial leverage ratios, and the price of

the credit linked note in subsection Subsection 4.8.
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Douglas-Rachford ADI results compared to exact solutions

∆t ∆x ∆y ρ12 = −0.9 Relative % error
0.01 3.19E-02 2.27E-02 0.74884 0.15970%
0.01 8.47E-03 6.03E-03 0.74867 0.13714%
0.001 8.47E-03 6.03E-03 0.74779 0.01886%
0.001 4.21E-03 3.00E-03 0.74774 0.01321%

MOI exact results 0.74764 -

Table 3. Comparing of the joint survival probability based on ADI method to the
exact solution MOI. The time period is one year and other parameters used are L1 =
73.2%, L2 = 31.5%, σ1 = 0.299, σ2 = 0.213, µ̃1 = µ̃2 = 0, ρ1r = ρ2r = 0, ρ12 = −0.9.
These data are for a CCC-BBB rated pair of firms.

4.1. Accuracy.

When the coefficients are constant, the solution obtained by the method of images approach (in

Subsection 3.3) is exact. Therefore, we use the method of images (MOI) results as a benchmark

for comparing the accuracy of alternating direction implicit and the Monte Carlo method.

First, we compare alternating direction implicit results to the exact solution. We consider

CCC-BBB paired firms. The exact analytical solution by the method of images is only valid

for specific values of the correlation coefficient ρ12 (see Table 1), and we use ρ12 = −0.9

(corresponding to ρ12 = − cos π
7
in Table 1). Note that x and y are volatility normalized log

leverage ratios (i.e. x = ln(L1/L̂1)/σ1, y = ln(L2/L̂2)/σ2), thus in order to increase accuracy,

spatial steps are chosen in a way that the given values of L1 and L2 are very close to grid points.

Table 3 shows that the relative percentage error of overall results are smaller than 1% for the

time step is 0.01 and spatial steps less than 0.04. The result is further improved (error < 0.02%)

when the time step is 0.001 and spatial steps < 0.01. We have found that other choices of ρ12

(for example ρ12 = 0 and ρ12 = −0.5) give similar convergence results.

Next, we compare the Monte Carlo results to the exact solution in order to their accuracy.

Table 4 shows that the relative percentage errors with 3, 650 time steps per year (i.e. 10 time

steps in a day) is around 1% where the number of paths is M = 500, 000 or M = 1, 000, 000.

The relative percentage errors are reduced further to < 0.4% when the number of time steps is

increased to 36, 500 (i.e. 100 time steps in a day).
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Monte Carlo results compared to exact solutions

n M ρ12 = −0.9 Relative % error
3,650 500,000 0.2835 1.1670%
3,650 1,000,000 0.2830 0.9590%
36,500 500,000 0.2812 0.3243%
36,500 1,000,000 0.2804 0.0549%

MOI exact results 0.2803 -

Table 4. Comparing of the joint survival probabilities based on the Monte Carlo
method to the exact solution of MOI. The time period is fifteen years and other pa-
rameters used are L1 = 73.2%, L2 = 31.5%, σ1 = 0.299, σ2 = 0.213, µ̃1 = µ̃2 = 0,
ρ1r = ρ2r = 0, ρ12 = −0.9. These data are for a CCC-BBB rated pair of firms.
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Figure 2. (a) shows the impact of the correlation coefficient ρ12 on joint survival
probability; (b) shows the impact of the correlation coefficient ρ12 on default correlation.
Here CCC-BBB paired firms are used and parameters used are L1=73.2%, L2=31.5%,
σ1=0.299, σ2 =0.213, µ̃1 = µ̃2 = 0, ρ1r = ρ2r = 0, ρ12 = −0.9,−0.5,−0.1, 0.5 and 0.9.

We note that when coefficients are time-dependent, the solution obtained by the method of

images approach is not exact (see Subsection 3.4). Therefore, we use the Monte Carlo results

as a benchmark for comparing the accuracy of the the approximate solution of MOI results and

the ADI results. Table 5 shows that the relative percentage error of the approximate results of

the MOI over time is < 1%. The relative percentage error of the ADI results overall are less

than 1% except at fifteen years (around 1.3%).

4.2. The Impact of Correlation Between Two Firms.
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Year MC MOI Relative % error ADI Relative % error
of MOI to MC of ADI to MC

1 0.7421 0.7409 -0.1587 0.7419 -0.0230
2 0.5997 0.5988 -0.1562 0.5994 -0.0567
3 0.5249 0.5240 -0.1612 0.5244 -0.0907
4 0.4766 0.4757 -0.1861 0.4760 -0.1330
5 0.4408 0.4405 -0.0652 0.4407 -0.0224
6 0.4134 0.4131 -0.0762 0.4132 -0.0399
7 0.3912 0.3907 -0.1167 0.3908 -0.0846
8 0.3725 0.3719 -0.1555 0.3721 -0.1260
9 0.3563 0.3559 -0.1318 0.3560 -0.1034
10 0.3424 0.3419 -0.1319 0.3420 -0.1016
11 0.3301 0.3297 -0.1411 0.3299 -0.1017
12 0.3193 0.3188 -0.1376 0.3191 -0.0696
13 0.3096 0.3092 -0.1103 0.3097 0.0403
14 0.3009 0.3008 -0.0101 0.3020 0.3698
15 0.2930 0.2939 0.3063 0.2969 1.3387

Table 5. The accuracy of MOI for time-dependent coefficients that was developed
in Subsection 3.4, and the accuracy of the ADI method by comparing the results of
joint survival probability to the MC results. The time period is fifteen years and other
parameters used are L1 = 73.2%, L2 = 31.5%, σ1 = 0.299, σ2 = 0.213, µ̃1 = µ̃2 = 0,
ρ12 = −0.9 and ρ1r = ρ2r = −0.75. For the MC method we use: Nt = 36500 andM = 1
million. For the ADI method we use: ∆τ = 0.01, ∆x = 8.47E-03 and ∆y = 6.03E-03.

We use the CCC and BBB paired firms to demonstrate the correlation effect. We consider the

correlation levels of ρ12 = −0.9,−0.5,−0.1, 0.5 and 0.9. In order to isolate the effects of the

drift terms of the leverage ratio processes and correlation of the interest rate process, we set

µ̃i=0 and ρir=0 (i=1,2). We will study later in this section the impact of these two factors on

joint survival probabilities and default correlations.

Figure 2-(a) plots the joint survival probability of firm i (i=1,2) from the beginning to the end

of the investment period of fifteen years. It shows the impact on joint survival probabilities

of the correlation coefficient ρ12 between CCC-BBB paired firms over the time horizon. First,

we observe that the joint survival probability declines over time. Second, the joint survival

probability decreases with the level of correlation coefficient ρ12. It reflects the fact that when

firms’ leverage ratios move in the opposite direction there is a lower joint survival probability

than when the move is in the same direction. When firms’ leverage ratios move in opposite

directions, as the leverage ratio of firm one moves closer to the default barrier (and so is more
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unlikely to survive), the second firm moves away from the default barrier (and more likely to

survive), so the chance of both firms surviving is small, because the two firms are always in

opposite situations. While when firms’ leverage ratios move in the same direction, for example

both firms’ leverage ratios moves away from the default barrier (and both firms more likely to

survive at the same time). In case of firm’s leverage ratios move closer to the default barrier at

the same time, the default probability of both firms default at the same time increases, while

the chance of default separately decreases. Recall (25), as a result the joint survival probability

increases.

We also observe that the variation of ρ12 makes little difference to the value of the joint survival

probabilities with there being no discernable difference up to six years and a difference of 6.71%

at fifteen years for ρ12 = 0.9 and −0.9.

Figure 2-(b) plots the default correlation of firm one and the second firm from the beginning

to the end of the investment period of fifteen years. The figure shows the impact on default

correlations of the correlation coefficient ρ12 between CCC-BBB paired firms. First, we note

that the sign of default correlations are the same as the correlation coefficient between two

firms’ leverage ratios ρ12, which agrees with what was found by Zhou (2001) and Cathcart

& El-Jahel (2002). Second, we observe that the magnitude of default correlation values (i.e.

the absolute values) increase as the absolute values of correlation coefficient ρ12. Here, the

magnitude of default correlation measures the strength of default of firm one relative to the

second firm, and the sign of default correlation indicates how this default signal works on the

second firm.

In case of positive correlation coefficient, the second firm will be distressed as the default of

firm one and is more likely to default at the same time. An example is that firm one is the

creditor of the second firm, as firm one defaults, the second firm becomes distressed and is

more likely to default at the same time. Consider the two-firm model here, if firms’ leverage

ratios are positively correlated, as firm one defaults, the default signal will cause the rise of

second firm’s leverage ratio and it will move closer to the default barrier, thus increasing the

probability of second firm defaulting at the same time.
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Figure 3. (a) shows the impact of different credit rated pairing of firms on joint
survival probability; (b) shows the impact of different credit rated pairing of firms on
default correlation. Here CCC-CCC, CCC-BBB and BBB-BBB paired firms are used
and parameters used are LCCC=73.2%, LBBB=31.5%, σCCC=0.299, σBBB =0.213,
µ̃1 = µ̃2 = 0, ρ1r = ρ2r = 0, ρ12 = −0.5 and 0.5.

In case of negative correlation coefficient, the second firm will benefit from the default of firm

one. For example, if the two firms are competitors, then if firm one defaults, the second firm

might profit by obtaining its customers and receiving a discount from its suppliers, as such, the

second firm will be less likely to default at the same time. From the modelling point of view, if

firms leverage ratios are negatively correlated, the default signal from firm one will cause the

second firm’s leverage ratio move in opposite direction and away from the default barrier, thus

the second firm is less likely to default at the same time.

We also note that the default correlation values at the very beginning of the time horizon

are rising. This is an artificial effect due to division by the very small values of individual

default probability for BBB-rated firm (for example, PDBBB = 6.97838 × 10−5). In order to

avoid division by the extreme small values, in the remaining figures (part (b) only), the plot of

default correlations will start at time equal to three years.

4.3. The Impact of Different Credit Quality Paired Firms.

This subsection shows the impact of the difference of the credit pairing of firms on joint survival

probabilities and default correlations by using CCC-CCC, CCC-BBB and BBB-BBB pairing
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Figure 4. (a) shows the impact of volatility levels on joint survival probability; (b)
shows the impact of volatility levels on default correlation. Here CCC-BBB paired
firms are used and parameters used are L1 = 73.2%, L2 = 31.5%, σ1 = σ2 = σ = 0.25
and 0.5, µ̃1 = µ̃2 = 0, ρ1r = ρ2r = 0, ρ12 = −0.5 and 0.5.

of firms. To illustrate the effect of positive and negative correlation between two firms, the two

non-extreme values of correlation coefficient ρ12 = −0.5, 0.5 are used here and in the rest of the

section.

Figure 3-(a) shows the impact on joint survival probabilities for CCC-CCC, CCC-BBB and

BBB-BBB pairing of firms. First, we observe that the JSP of good credit quality firms is

higher than that of low credit quality firms. Second, we find that JSP curves decrease slowly

over time for BBB-BBB paired firms, while for CCC-CCC paired firms, JSP curves quickly in

the short term and flatten out towards long run. We also notice that the effect of leverage ratio

correlation on CCC-CCC paired firm is more significant than BBB-BBB paired firm, where

lower credit quality firms are more sensitive to the change of correlation levels than that of

good credit quality firms.

For good credit quality firms, their initial leverage ratios are lower and distant from the default

barrier, therefore, the joint survival probability is higher than for lower credit quality firms.

If firm one has defaulted, the second firm will experience a rise (decline) in its leverage ratio

because of the positive (negative) correlation, however, because of the low initial leverage ratio

of the second firm, this rise (decline) in the leverage ratio of the second firm does not effect

significantly its default probability. However, if the second firm is of low credit quality, its initial
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leverage ratio is high and closer to the default barrier, this rise (decline) in leverage ratios will

increase the probability of bringing the second firm into default.

Figure 3-(b) illustrates the impact on default correlations. It shows that at a given maturity the

absolute values of DC increases as the firm’s credit quality decreases. It shows the fact that the

lower is the credit quality of paired firms, the higher the strength of default of firm one relative

to the second firm. However, an interesting result is that for a good quality (BBB-BBB) pair

of firms, if they are positively correlated, the default correlation is higher than that of a good

quality and low quality pairing of firms. But this situation is reversed (as far as the comparison

of the absolute values of default correlation is concerned) if they are negatively correlated. It is

difficult to relate this finding to any empirical evidence, though clearly it points to the need for

more empirical research in this area. We also observed that DC curves of CCC-CCC increase

quickly at the short term and flatten at the long-term, however DC curves of BBB-BBB and

CCC-BBB paired firms increase slowly over time. These effects make sense in that the impact

of firm one defaulting on the second firm occurs quickly for low credit quality firms, but for

good credit quality firms, such an impact increases gradually over time.

4.4. The Impact of Volatilities.

We consider the volatility levels ranging between σi = 0.25 and 0.5. Figure 4-(a) shows that

the higher the volatility level the lower the joint survival probability. This result seems reflect

the fact that when the proportional change in leverage ratios is more volatile, the chance of the

leverage ratio hitting the default point is higher, so the joint survival probability is lower.

Figure 4-(b) shows that the values of default correlation increase with volatility levels. In

terms of the two-firm model, the higher the volatility level, the larger the range in which

the leverage ratio can move. For example, when firm one defaults, the impact on the second

firm’s leverage ratio can move with a larger amplitude towards the default barrier (if firms are

positively correlated) than the smaller amplitude when using a smaller volatility level, therefore

the probability of the second firm defaulting at the same time increases. We also note that the

effect of changing volatility level on DC is more significant at the short term.

4.5. The Impact of Drift Levels.
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(b) DC

Figure 5. (a) shows the impact of mean levels on joint survival probability; (b) shows
the impact of mean levels on default correlation. Here CCC-BBB paired firms are used
and parameters used are L1=73.2%, L2=31.5%, σ1=0.299, σ2 =0.213, µ̃1 = µ̃2 = µ̃ =
−0.1 and 0.1, ρ1r = ρ2r = 0, ρ12 = −0.5 and 0.5.

We consider the drift levels µ̃1 = µ̃2 = −0.1, 0, 0.1. Note that µ̃i is under the risk-neutral

measure. Figure 5-(a) shows that the joint survival probability increases as the drift level

decreases. Recall that it is the growth rate of proportional changes in the leverage ratio,

which means the higher the drift level, the higher the leverage ratio over time, and thus the

probability of leverage ratio hitting the default barrier is high, therefore the joint survival

probability declines with the rise of the drift level. We note that the joint survival probability

is very sensitive to the change of drift levels. We also observe that the effect of the correlation

coefficient ρ12 is more pronounced for larger values of drift levels. There is no significant impact

of ρ12 on joint survival probabilities in the case of negative drift, but a noticeable impact when

the value of the drift is positive. For example, if the drift is negative, then this would mean

a negative growth rate of the proportional change in leverage ratio on average, where a firm’s

leverage ratio decreases and moves away from the default barrier over time. If firm one defaults,

the second firm will be less impacted because its leverage ratio is heading away from the default

barrier even though the correlation coefficient is positive (note that the impact of ρ12 is no

significant for negative drift), and so is less likely to default at the same time. The situation

will reverse itself for a positive drift.
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(b) DC

Figure 6. (a) shows the impact of leverage ratio levels on joint survival probability;
(b) shows the impact of leverage ratio levels on default correlation. Here initial leverage
ratios used in case (i) are L1 = L2 = L = 31.5% and in case (ii) are L1 = L2 = L = 80%.
Other parameters used are σ1 = σ2 = 0.213, µ̃1 = µ̃2 = 0, ρ1r = ρ2r = 0, ρ12 = −0.5
and 0.5.

Figure 5-(b) shows that the default correlation is sensitive to the change in the drift levels.

It also shows that the higher the drift level, the higher values of default correlation. If a

firm’s leverage ratio grows to a higher value on average, the credit quality of the firm decreases

dramatically, and the impact on default correlation is similar to the previous discussion (see

Subsection 4.3) on the impact of different credit quality firms, that is the lower the credit

quality of firms, the higher the strength of default of firm one relative to the second firm.

4.6. The Impact of Initial Value of Leverage Ratio Levels.

We consider the initial value of leverage ratio levels L1 = L2 = 31.5% (corresponding to BBB-

rated firms) and L1 = L2 = 80% (corresponding to CCC-rated firms). Figure 6-(a) shows the

joint survival probability generally decreases over time. It shows that the lower the initial value

of leverage ratio levels, the higher the joint survival probability. The joint survival probability

is more sensitive to the change in the correlation coefficient ρ12 when the initial value of leverage

ratio is high. This result is similar to the results observed in Figure 3-(a). Figure 6-(b) shows

that the higher the leverage ratio levels, the higher the default correlations (in absolute values).

That is the lower the quality of these two firms, the grater is the default probability between

them.
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(b) DC

Figure 7. (a) shows the impact of the correlation coefficient ρir on joint survival
probability; (b) shows the impact of the correlation coefficient ρir on default correlation.
Here CCC-BBB paired firms are used and parameters used are L1 = 73.2%, L2 =
31.5%, σ1 = 0.299, σ2 = 0.213, µ̃1 = µ̃2 = 0, ρ12 = −0.5, 0.5, ρ1r = ρ2r = −0.5, 0.5, the
maturity of risk-free bond price is T = 15, κr = 1.0 and σr = 0.03162.

4.7. Impact of Correlation Between Firms & Interest Rates.

This subsection presents the impact of interest rate risk on joint survival probabilities and

default correlations. Note that when the correlation to the interest ratio process ρir is non-

zero, the joint survival probability and the probability of individual defaults are related to the

parameter κr that controls the speed of the mean reversion of the interest rate process via the

time-dependent coefficient b(t), which is given in (41). We consider κr = 1.0, σr = 0.03162 which

is consistent with the values used by Hui et al. (2007). The values of the correlation coefficients

between firms’ leverage ratios and interest rates are take the mid values ρ1r = ρ2r = −0.5, 0.5.

Figure 7-(a) shows that the joint survival probability increases as the correlation coefficient

ρir increases. Recall (41), which is a negative time-dependent function, thus the drift of the

leverage ratio is actually proportional negatively to the correlation level. Therefore, the higher

the correlation coefficient ρir, the smaller the drift level, and so the leverage ratio moves to

a smaller value on average. At a lower leverage ratio level, the chance of hitting the default

barrier is smaller, and thus the higher the chance of surviving over time. But we note that the

effect of the interest rate becomes weaker at about year 13 where the the solid line with crosses

and solid line with circles cross. This effect comes from the time-dependent function b(t), and
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Figure 8. (a) shows the impact of the correlation coefficient ρ12 on credit linked note
prices, where CCC-BBB paired firms are used; (b) shows the impact of different credit
rated pairing of firms credit linked note prices, where CCC-CCC, CCC-BBB and BBB-
BBB paired firms are used. Here parameters used are LCCC=73.2%, LBBB=31.5%,

σCCC=0.299, σBBB =0.213, r = 5%, κr = 1, θ̃r = 5%, σ2
r = 0.001, µ̃1 = µ̃2 = 0,

ρ1r = ρ2r = 0 and the payoff is 1. The correlation coefficient ρ12 used in (a) is
ρ12 = −0.9,−0.5,−0.1, 0.5 and 0.9; in (b) is ρ12 = −0.5 and 0.5.

thus the interest rate impact on the drift rate is time varying. We also observe that the joint

survival probability is not very sensitive to the change of the correlation level to interest rate

risk.

Figure 7-(b) shows that the level of DC increases as the correlation coefficient ρir declines,

but the impact is not significant. We also observe the time varying function of interest rate

parameters impact on the DC at about year 13, which is similar to the result of observed in

Figure 7-(a).

4.8. The Price of Credit Linked Notes.

The focus of this paper has mostly been on default correlations and joint survival probabilities,

but the other application of the two-firm model is to price the credit linked note. In this

subsection, we illustrate the impact on the prices of credit linked notes with respect to variation

in the values of correlation coefficients between two firms and with respect to different credit

quality paired firms.
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Recall from (36) that the price of a credit linked note is the product of the function P̂ (L1, L2, t)

and the risk-free bond price B(r, t) of the Vasicek (1977) model11. For the numerical calculations

we use parameters similar to Hui et al. (2007), where r = 5%, κr = 1, θ̃r = 5% and σ2
r = 0.001.

Figure 8-(a) shows the impact on credit linked note prices of different values of the correlation

coefficient ρ12 of a BBB-CCC paired firms. The parameters used to calculate P̂ (L1, L2, t) are

the same as in Figure 2-(a). We observe that the credit linked note prices decrease with respect

to time-to-maturity as the correlation coefficient ρ12 decreases. This may be due to the fact

that when firms’ leverage ratios move in the same direction the price of a credit linked note is

higher than that for moves in the opposite direction. If firms’ leverage ratios move in opposite

directions, as one firm’s leverage ratio moves closer to the default barrier (and is less likely to

survive), the second firm moves away from the default barrier (and is more likely to survive),

so the chance of both firms surviving is small because they are always moving in opposite

directions, therefore, the price of credit linked note is lower.

Figure 8-(b) shows the impact on credit linked note prices for BBB-BBB, BBB-CCC and CCC-

CCC paired firms over the time-to-maturity. The parameter used to evaluate P̂ (L1, L2, t) are

the same as in Figure 3-(a). We observe that the price of a credit linked note of BBB-BBB

paired firms is the highest, while the price of CCC-CCC paired firms is the lowest. This result

seems sensible since the price of credit linked note issued by good credit quality firms is higher

than that issued by lower credit quality firms.

We also observe that the impact of the correlation coefficient ρ12 or the credit quality of firms

on the price of credit linked note is the same as the impact on joint survival probabilities

(see Figure 2-(a) and Figure 3-(a)). This is because the function (48) and the joint survival

probability function (57) both depend principally on the same transition probability density

function, as the payoff of the credit linked note is the par value (see (31)). Therefore, if we

use the same risk-free bond price function, the impact of other parameters on credit linked

note prices will be similar to the impact on joint survival probabilities as illustrated in previous

subsections.

11The solution of the Vasicek model can be found for example in Wilmott, Howison & Dewynne (1995) or Hull
(2000).
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5. Conclusion

The aim of this article has been to extend the dynamic leverage ratio model for Hui et al. (2007)

to the two-firm case so as to study its implications for default correlations and joint survival

probabilities.

In Section 2, we reviewed the one-firm dynamic leverage ratio model of Hui et al. (2007) for

corporate bond pricing. In their model, by using of the method of separation of variables, the

corporate bond price can be interpreted as the product of a riskless bond price and a function

depending only on the firm’s leverage ratio. The risk-free bond price has a known closed-form

solution, therefore the main focus is on solving for the partial differential equation that depends

only on the firm’s leverage ratio. We reviewed the method of images approach for obtaining

a closed-form solution in terms of cumulative normal distribution functions and then the time

varying barrier method proposed by Lo et al. (2003) to deal with the case in which parameters

are time varying.

In Section 3, we developed the framework for the dynamic leverage ratio model in the two-firm

situation for pricing financial derivatives involving default risks among two firms using the credit

linked note as the motivating example. We showed that the problem can be reduced to that of

solving the partial differential equation for a function depends only on the two firms’ leverage

ratios. We also extended the method of images approach to the two-dimensional heat equation

case and obtained the analytical solution subject to zero boundary conditions. This result was

then applied to solve the partial differential equation for the function with constant coefficients.

For coefficients in the time-dependent case, we extended the time varying barrier approach to

obtain an approximate solution. However, we saw that the limitation of the method of images

approach applied in the two-dimensional situation is that it works only for certain values of the

correlation coefficient between the dynamic leverage ratios of firms.

In order to obtain solutions for general values of the correlation coefficient, we considered the

alternating direction implicit numerical method in Subsection 3.5, developing in particular the

alternating direction implicit numerical scheme based on Douglas & Rachford (1956). We also
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developed a Monte Carlo scheme to serve as a benchmark. A discussion on the accuracy for

different methods is shown in Subsection 4.1.

In Section 4, we investigated the impact on joint survival probabilities and default correlations

of different values of the model parameters. The main finding were that the joint survival

probabilities rise if there is (i) a decrease in the leverage ratio volatility, the average mean levels,

the initial leverage ratios, or (ii) an increase in the correlation coefficient between leverage ratios

processes, or in the correlation coefficient between leverage ratio and interest rate processes.

We also found that the default correlation (in absolute values) rises if there is (i) an increase

in the firms’ leverage ratios correlation, or their volatilities, or average mean levels, or initial

leverage ratios, or (ii) a decrease in the correlation between firm’s leverage ratio and the interest

rate.

We note that these findings are based on a study of the impact of the model parameters chosen.

Whilst there is a rationale for these values as we have explained, it remains a task for future

research to calibrate the types of model discussed here to market data.

Appendix A. The Method of Images and the Derivation of Equation (15)

Consider the heat equation

∂u

∂τ
=

1

2

∂2u

∂x2
, (A-1)

where x is unrestricted in the region x ∈ (−∞,∞). The solution to (A-1) is known12 to be of

the form

u(x, τ) =

∫ ∞

−∞
g(x, y; τ)u(y)dy, (A-2)

where u(y) is the initial condition function, g is the transition probability density function that

has the form

g(x, y; τ) =
e−(x−y)2/2τ

√
2πτ

. (A-3)

12The solution of the heat equation can be found in many reference. For example, Wilmott et al. (1995)
(Chpaters 4 and 5) give a good discussion and derivation of the solution of the heat equation.
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If a zero boundary condition is imposed along x-axis at x = 0, then

u(0, τ) = 0, (A-4)

and the region of interest for the solution becomes x ∈ (−∞, 0). Applying the method of

images approach, the exact solution to the heat equation (A-1) subject to the zero boundary

condition (A-4) is

u(x, τ) =

∫ 0

−∞
g̃(x, y; τ)u(y)dy, (A-5)

where g̃ is the transition probability density function for the restricted process. It is obtained

by subtracting from the original density g (for the unrestricted process) centered at y within the

(“physical”) region y ∈ (−∞, 0) the same density centered at −y within the (“nonphysical”)

region y ∈ (0,∞), that is

g̃(x, y; τ) = g(x, y; τ)− g(x,−y; τ), (A-6)

so that the the boundary condition (A-4) is satisfied, as is easily verified.

Next, consider the case in which the coefficients in (10) are constant, that is σL(τ) = σL and

γ(τ) = γ, and the partial differential equation becomes

∂P̄

∂τ
=

1

2
σ2
L

∂2P̄

∂x2
+ γ

∂P̄

∂x
. (A-7)

The partial differential equation (A-7) can be reduced to the heat equation (A-1).

Proposition 1. The solution to the partial differential equation (A-7) may be written

P̄ (x, τ) = eηx+ξτu(x, ζ), (A-8)

where η, ξ and ζ are constants given by

η = − γ

σ2
L

, ξ = − γ2

2σ2
L

, ζ = σ2
Lτ,
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and u(x, ζ) satisfies the partial differential equation

∂u

∂ζ
=

1

2

∂2u

∂x2
. (A-9)

Proof: Calculate

∂P̄

∂τ
= eηx+ξτ

[
ξu+

∂u

∂τ

]
,
∂P̄

∂x
= eηx+ξτ

[
ηu+

∂u

∂x

]
,
∂2P̄

∂x2
= eηx+ξτ

[
η2u+ 2η

∂u

∂x
+
∂2u

∂x2

]
.(A-10)

Substituting from equations (A-10) into equation (A-7), the partial differential equation reduces

to

∂u

∂τ
=

1

2
σ2
L

[
η2u+ 2η

∂u

∂x
+
∂2u

∂x2

]
+ γ

[
ηu+

∂u

∂x

]
,

=
1

2
σ2
L

∂2u

∂x2
+ (σ2

Lη + γ)
∂u

∂x
+ (−ξ + 1

2
σ2
Lη

2 + γη)u. (A-11)

The ∂u
∂x

and u terms can be eliminated by choosing

σ2
Lη + γ = 0 ⇒ η = − γ

σ2
L

, (A-12)

−ξ + 1

2
σ2
Lη

2 + γη = 0 ⇒ ξ = −1

2

γ2

σ2
L

, (A-13)

the (A-11) becomes

∂u

∂τ
=

1

2
σ2
L

∂2u

∂x2
. (A-14)

Since u(x, ζ) depends on ζ , we can express ∂u
∂τ

= ∂ζ
∂τ

∂u
∂ζ
, then (B-20) becomes

[σ2
L]

−1 ∂ζ

∂τ

∂u

∂ζ
=

1

2

∂2u

∂x2
, (A-15)

In order to eliminate the term [σ2
L]

−1, we choose ζ to satisfy

[σ2
L]

−1 ∂ζ

∂τ
= 1, (A-16)
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from which

ζ = σ2
Lτ. (A-17)

So that (A-15) reduces to the heat equation (A-9).

�

The initial conditions for the function P̄ and the heat equation u are related by
(
setting

P̄ (y, 0) = P̄ (y) and u(y, 0) = u(y)
)

P̄ (y) = 1 = eηyu(y), (A-18)

so that

u(y) = e−ηy. (A-19)

Substituting the relations (A-8) and (A-19) into (A-5), yields

e−ηx−ξτ P̄ (x, τ) =

∫ 0

−∞
g̃(x, y; ζ)e−ηyP̄ (y)dy. (A-20)

Rearranging equation (A-20), the solution (15) is obtained.

Appendix B. The Derivation of Equation (21)

Consider a transformation of the partial differential equation

∂P̄β

∂τ
=

1

2
σ2
L(τ)

∂2P̄β

∂x2
+ γ(τ)

∂P̄β

∂x
, (B-1)

by setting

P̄β(x, τ) = e−x∗(τ) ∂
∂x P̃ (x, ζ), (B-2)

where ζ =
∫ τ

0
σ2
L(v)dv and the function P̃ (x, ζ) satisfies

∂P̃

∂ζ
=

1

2

∂2P̃

∂x2
− β

∂P̃

∂x
. (B-3)
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e
∂
∂x is an operator, it operates on an arbitrary, infinitely differentiable, function f(x) according

to

ec(τ)
∂
∂xf(x) =

∞∑

n=0

1

n!
(c(τ))n

∂nf(x)

∂xn
, (B-4)

where c(τ) is a time-dependent function.

A calculus for this operator has been developed in quantum mechanics for solving Fokker-Planck

equations and Schrödinger equations, and is expounded for example in Suzuki (1989). Many of

the results obtained using this operator calculus can be obtained by other approaches, however

this calculus provides a convenient unified approach, for which we use it in this article.

To transform (B-1) to (B-3), we calculate

∂

∂τ

[
ec(τ)

∂
∂xf(x, τ)

]
, (B-5)

by applying the Baker-Campbell-Hausdorff formula. The Baker-Campbell-Hausdorff formula is

widely used in quantum mechanics to obtain a solution with combined exponentials of operators

when these operators do not commute. The Baker-Campbell-Hausdorff formula is defined as

(see for example, Hassani (1998), Chapter 2.2)

eABe−A ≡ B+ [A,B] +
1

2!
[A, [A,B]] + · · · , (B-6)

where A and B are operators. The expression [A,B] is called the commutator of two operators,

and is defined as [A,B] ≡ AB−BA.

To carry out the operation in (B-5), we consider the following proposition.

Proposition 2. The expression (B-5) may be written

ec(τ)
∂
∂x

[∂f(x, τ)
∂τ

+
∂c(τ)

∂τ

∂f(x, τ)

∂x

]
. (B-7)

Proof: First, we multiply (B-5) by the term

ec(τ)
∂
∂x e−c(τ) ∂

∂x ≡ 1, (B-8)
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to obtain

(
ec(τ)

∂
∂x e−c(τ) ∂

∂x

) ∂
∂τ

[
ec(τ)

∂
∂xf(x, τ)

]
= ec(τ)

∂
∂x

(
e−c(τ) ∂

∂x
∂

∂τ
ec(τ)

∂
∂x

)
f(x, τ). (B-9)

Considering the term in the bracket and applying the Baker-Campbell-Hausdorff formula (B-6)

(setting A ≡ −c(τ) ∂
∂x

and B ≡ ∂
∂τ
), we have

(
e−c(τ) ∂

∂x
∂

∂τ
ec(τ)

∂
∂x

)

=
∂

∂τ
+ [−c(τ) ∂

∂x
,
∂

∂τ
] +

1

2!
[−c(τ) ∂

∂x
, [−c(τ) ∂

∂x
,
∂

∂τ
]] + · · · ,

=
∂

∂τ
+

(
−c(τ) ∂

∂x
· ∂
∂τ

− ∂

∂τ
· (−c(τ) ∂

∂x
)

)
+ 0,

=
∂

∂τ
+
∂c(τ)

∂τ

∂

∂x
. (B-10)

Note that the higher order terms vanish, as is quite straight forward to see, for example, by

calculating the second term

1

2!
[−c(τ) ∂

∂x
, [−c(τ) ∂

∂x
,
∂

∂τ
]] =

1

2!
[−c(τ) ∂

∂x
,
∂c(τ)

∂τ

∂

∂x
]

= −c(τ) ∂
∂x

· ∂c(τ)
∂τ

∂

∂x
− ∂c(τ)

∂τ

∂

∂x
· (−c(τ) ∂

∂x
)

= −c(τ)∂c(τ)
∂τ

∂2

∂x2
+ c(τ)

∂c(τ)

∂τ

∂2

∂x2
= 0. (B-11)

Substituting (B-10) into (B-9), we obtain

∂

∂τ

[
ec(τ)

∂
∂xf(x, τ)

]
= ec(τ)

∂
∂x

[∂f(x, τ)
∂τ

+
∂c(τ)

∂τ

∂f(x, τ)

∂x

]
. (B-12)

�

Apply the same approach, we have

∂

∂x

[
ec(τ)

∂
∂xf(x, τ)

]
= ec(τ)

∂
∂x

[∂f(x, τ)
∂x

]
, (B-13)

and

∂2

∂x2
[
ec(τ)

∂
∂xf(x, τ)

]
= ec(τ)

∂
∂x

[∂2f(x, τ)
∂x2

]
. (B-14)
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Applying the relationship (B-12)-(B-14) to (B-2), we obtain

∂P̃

∂τ
+
∂[−x∗(τ)]

∂τ

∂P̃

∂x
=

1

2
σ2
L(τ)

∂2P̃

∂x2
+ γ(τ)

∂P̃

∂x
. (B-15)

Note that if the dynamic form of x∗(τ) follows (19), we have ∂[−x∗(τ)]
∂τ

= γ(τ) + βσ2
L(τ), hence

∂P̃

∂τ
=

1

2
σ2
L(τ)

∂2P̃

∂x2
− βσ2

L(τ)
∂P̃

∂x
. (B-16)

Define a new time-to-maturity variable

ζ =

∫ τ

0

σ2
L(v)dv. (B-17)

then P̃ (x, ζ) satisfies

[
σ2
L(τ)

]−1 ∂

∂ζ

[
P̃
]∂ζ
∂τ

=
1

2

∂2P̃

∂x2
− β

∂P̃

∂x
. (B-18)

As [σ2
L(τ)]

−1 × ∂ζ
∂τ

= 1, we obtained (B-3).

Note that the equation (B-3) has the constant coefficient only, we can apply the transformation

described in Appendix A, by setting

P̃ (x, ζ) = eβx−β2ζ/2u(x, ζ), (B-19)

where u(x, ζ) satisfies the heat equation

∂u

∂ζ
=

1

2

∂2u

∂x2
. (B-20)

Therefore, combine (B-2) and (B-19), we have

P̄β(x, τ) = e−x∗(τ) ∂
∂x

[
eβx/2−β2ζ/4u(x, ζ)

]
, (B-21)

= eβ(x−x∗(τ))/2−β2ζ/4u(x− x∗(τ), ζ). (B-22)

The relation (B-22) is obtained by the following proposition.

Proposition 3. The evolution operator ec(τ)
∂
∂x satisfies the relation
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ec(τ)
∂
∂xf(x) = f(x+ c(τ)). (B-23)

Proof: Using Taylor series expansion, f(x+ c(τ)) can be expressed as

f(x+ c(τ)) = f(x) + f ′(x)(c(τ)) +
1

2!
f ′′(x)(c(τ))2 + · · · ,

=

∞∑

n=0

1

n!
(c(τ))n

∂nf(x)

∂xn
=

[
∞∑

n=0

c(τ)n

n!

∂n

∂xn

]
f(x),

= ec(τ)
∂
∂xf(x). (B-24)

�

Next, we substitute boundary condition (18) into (B-22) and so obtain the zero boundary

condition for u as13

u(0, ζ) = 0. (B-25)

and the initial condition for P̄β(y) = 1 at τ = 0 yield

P̄β(y) = 1 = eβyũ(y). (B-26)

From (B-25), we note that the zero boundary condition is fulfilled, hence, we can apply the

solution for the heat equation (A-5) to obtain the solution for P̄β via the relation (B-22). Then,

we substitute (B-26) and (B-22) into the solution for the heat equation (A-5), to obtain

e−β(x−x∗(τ))+β2ζ/2P̄β(x, τ) =

∫ 0

−∞
g̃(x− x∗(τ), y; ζ)e−βyP̄β(y)dy. (B-27)

Rearranging (B-27) and comparing to equation (20), we obtain

fβ(x, y, τ) = eβ[x−y−x∗(τ)]−β2ζ/2g̃(x− x∗(τ), y; ζ). (B-28)

13We note that

P̄β(x
∗(τ), τ) = 0 = eβ·0−β2ζ/2ũ(0, ζ).
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Appendix C. The Method of Images in a Two-Dimensional Situation

Consider the two-dimensional heat equation

∂u

∂τ
=

1

2

∂2u

∂x21
+ ρ12

∂2u

∂x1∂x2
+

1

2

∂2u

∂x22
, (C-1)

where x1 and x2 are unrestricted in the region x1, x2 ∈ (−∞,∞). Its solution is known to be

of the form

u(x1, x2, τ) =

∫ ∞

−∞

∫ ∞

−∞
g(x1, x2, y1, y2; τ)u(y1, y2)dy1dy2. (C-2)

where u(y1, y2) is the initial condition function and g is the bivariate transition probability

density function for transition from y1, y2 to x1, x2 during a period of time τ , and has the form

expressed in equation (15).14

The zero boundary conditions are imposed at x1 = 0 and x2 = 0, and require that

u(0, x2, τ) = 0, (C-3)

u(x1, 0, τ) = 0, (C-4)

and the region of interest for the solution is given by x1, x2 ∈ (∞, 0). The solution of the

partial differential equation (C-1) subject to the boundary conditions (C-3) and (C-4) may be

expressed as

u(x1, x2, τ) =

∫ 0

−∞

∫ 0

−∞
g̃(x1, x2, y1, y2; τ)u(y1, y2)dy1dy2, (C-5)

where g̃ is the bivariate transition probability density function for the restricted process.

Applying the method of images approach, the solution for the density function g̃ is a linear

combinations of density functions g (for the unrestricted process) in such a way that their net

effect cancels out at the barriers x1 = 0 and x2 = 0, then as a result the boundary conditions

(C-3)-(C-4) are satisfied. To illustrate this concept, imagine there is a “source” density function

14More discussions, for example the multivariate continuous distributions can be found in Albanese & Campolieti
(2006) Chapter 1.3.
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(say g0) located in the physical region15 at the position (y01, y
0
2) in the lower left hand quadrant

(that is g0 = g0(x1, x2, y
0
1, y

0
2; τ)), then we introduce an “image” density function (say g1)

in the nonphysical region at the position (y11, y
1
2) in the lower right hand quadrant (that is

g1 = g1(x1, x2, y
1
1, y

1
2; τ)), such that the net effect of the two g functions cancel at the barrier

x1 = 0 as shown in Figure 9.

x1

x2

@@
@@
@@
@@
@@
@@
@@

(y01, y
0
2) (y11, y

1
2)

Figure 9. The 1st image reflected in x1 = 0.

To determine (y11, y
1
2), we consider the linear combination which in this case is given by

g0(x1, x2y
0
1, y

0
2; τ)− g1(x1, x2y

1
1, y

1
2; τ). (C-6)

We require the combination in (C-6) to be zero at x1 = 0, that is

g0(0, x2, y
0
1, y

0
2; τ)− g1(0, x2, y

1
1, y

1
2; τ) = 0. (C-7)

Substituting equation (51) into (C-7), we see that the zero boundary condition at x1 = 0 is

satisfied provided that

(0− y01)
2 − 2ρ12(0− y01)(x2 − y02) + (x2 − y02)

2

= (0− y11)
2 − 2ρ12(0− y11)(x2 − y12) + (x2 − y12)

2. (C-8)

Rearranging this expression, we obtain

x2φ+ α = 0, (C-9)

15By the physical region we mean the region −∞ < x1 < 0, −∞ < x2 < 0.
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where

φ = 2(ρ12y
0
1 − ρ12y

1
1 − y02 + y12), (C-10)

α = (y01)
2 − (y11)

2 − 2ρ12y
0
1y

0
2 + 2ρ12y

1
1y

1
2 + (y02)

2 − (y12)
2. (C-11)

In order that (C-9) hold for all x2, it must be the case that φ = 0 and α = 0 hold simultaneously,

in other words if

2(ρ12y
0
1 − ρ12y

1
1 − y02 + y12) = 0, (C-12)

(y01)
2 − (y11)

2 − 2ρ12y
0
1y

0
2 + 2ρ12y

1
1y

1
2 + (y02)

2 − (y12)
2 = 0. (C-13)

Solving (C-12) and (C-13) for y11 and y12, we obtain

y11 = −y01, (C-14)

y12 = y02 − 2ρ12y
0
1. (C-15)

In the two-dimensional situation, there is also a barrier at x2 = 0 and it is easy to verify that

g0(x1, 0, y
0
1, y

0
2; τ)− g1(x1, 0, y

1
1, y

1
2; τ) 6= 0. (C-16)

Thus, we need to introduce another density function in the nonphysical region (say g2) at

the position (y21, y
2
2) in the upper right hand quadrant (that is g2 = g2(x1, x2, y

2
1, y

2
2; τ), see

Figure 10), such that it cancels out the effect of the image g1 at x2 = 0, that is, we require

g1(x1, 0, y
1
1, y

1
2; τ)− g2(x1, 0, y

2
1, y

2
2; τ) = 0. (C-17)

To determine the vales of (y21, y
2
2), we solve (C-17) similar to the way (C-8) was solved to obtain

y22 = −y12, (C-18)

y21 = y11 − 2ρ12y
1
2. (C-19)
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x1

x2

@@
@@
@@
@@
@@
@@
@@

@@ @@ @@ @@ @@ @@ @@

(y01, y
0
2) (y11, y

1
2)

(y21, y
2
2)

Figure 10. The 2nd image reflected in x2 = 0.

However the introduction of the image density function g2 will perturb the boundary condition

at x1 = 016. So in order to cancel out this impact we need to introduce a third density function

g3 at (y31, y
3
2) in the upper left hand quadrant as shown in Figure 11. In order to satisfy the

boundary condition at x1 = 0 we require

g2(0, x2, y
2
1, y

2
2; τ)− g3(0, x2, y

3
1, y

3
2; τ) = 0. (C-20)

Solving equation (C-20) similarly to the way equation (C-8) was solved to obtain

y31 = −y21, (C-21)

y32 = y22 − 2ρ12y
2
1. (C-22)

x1

x2

@@
@@
@@
@@
@@
@@
@@

@@ @@ @@ @@ @@ @@ @@

(y01, y
0
2) (y11, y

1
2)

(y21, y
2
2)(y31, y

3
2)

Figure 11. The 3rd image reflected in x1 = 0.

Of course the introduction of density function g3 could potentially perturb the boundary con-

dition at x2 = 0. However in the case ρ12 = 0 it turns out that the primary source at (y01, y
0
2)

and the image density functions g1, g2 and g3 all balance each other such that the desired

16It is readily confirmed that
g1(0, x2, y

1
1, y

1
2 ; τ)− g2(0, x2, y

2
1 , y

2
2; τ) 6= 0
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boundary conditions at x1 = 0 and x2 = 0 are preserved. One can view this as the fact that if

one were to obtain a fourth image g4, the reflection of g3 in x2 = 0, it would be precisely the

primary source (that is it turns out that y41 = y01, y
4
2 = y02). Of course, in the method of images

approach, an image cannot in fact be located in the region of interest (or the physical region),

where the source is located. Thus for the case in which ρ12 = 0, the solution for g̃ is the linear

combination of the density functions g0, g1, g2 and g3, namely

g̃(x1, x2, y
0
1, y

0
2; τ) = g0(x1, x2, y

0
1, y

0
2; τ)− g1(x1, x2, y

1
1, y

1
2; τ)

+g2(x1, x2, y
2
1, y

2
2; τ)− g3(x1, x2, y

3
1, y

3
2; τ), (C-23)

which satisfies g̃(0, x2, y
0
1, y

0
2; τ) = g̃(x1, 0, y

0
1, y

0
2; τ) = 0.

For general values of ρ12 ∈ (−1, 1), we need to reflect successively more than three times in a

set of mirrors located at lines from the origin in the image region in such a way that the “loop

closes”, and thus we would obtain after m reflections a set of m images such that the (m+1)st

image would be the original source term. These m image terms just balance each other in such

a way that the desired boundary conditions at x1 = 0 and x2 = 0 are preserved. In fact it turns

out that only for specific values of ρ12 will the “loop close” after a finite number of reflections

as shown in Appendix E, which also shows how to locate the set of reflecting mirrors. The

values of ρ12 (rounded to 3 decimal places) that result in a “closed-loop” are shown in Table 1.

Dropping the superscripts in g0 and (y01, y
0
2), the solution for the density function g̃ appearing

in equation (C-5) may be written

g̃(x1, x2, y1, y2; τ) = g(x1, x2, y1, y2; τ) +

m∑

k=1

(−1)kgk(x1, x2, y
k
1 , y

k
2 ; τ), (C-24)

where m is the total number of images used to form the closed-loop in such a way that the

desired boundary conditions (C-3)-(C-4) are preserved. Here yk1 and yk2 are obtained recursively

from the relations between successive images as shown in equations (54)-(56) (for Y k
1 and Y k

2

replacing by yk1 and yk2 . Note that equations (54)-(56) are derived in the same way as equations

(C-14)-(C-15), (C-18)-(C-19) and (C-21)-(C-22) were derived.
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Appendix D. The Derivation of Equation (50)

Proposition 4. The solution to the partial differential equation (43) with constant coefficients

given in (49) may be written

P̄ (X1, X2, τ) = eη1X1+η2X2+ξτu(X1, X2, τ), (D-1)

where η1, η2 and ξ are constants given by (52)-(53), and u(X1, X2, τ) satisfies the two-dimensional

heat equation (C-1) (with X1 and X2 replaced by x1 and x2).

Proof: Define P̄ such that P̄ (X1, X2, τ) = eη1X1+η2X2P̃ (X1, X2, τ), where the η1 and η2 are to

be chosen in a “convenient” way. We calculate

∂P̄

∂τ
= eη1X1+η2X2

∂P̃

∂τ
,

∂P̄

∂Xi
= eη1X1+η2X2

[
ηiP̃ +

∂P̃

∂Xi

]
, (i = 1, 2)

∂2P̄

∂X2
i

= eη1X1+η2X2

[
η2i P̃ + 2ηi

∂P̃

∂Xi

+
∂2P̃

∂X2
i

]
, (i = 1, 2)

∂2P̄

∂X1∂X2

= eη1X1+η2X2

[
η1η2P̃ + η2

∂P̃

∂X1

+ η1
∂P̃

∂X2

+
∂2P̃

∂X1∂X2

]
. (D-2)

Then equation (43) becomes

∂P̃

∂τ
=

1

2

∂2P̃

∂X2
1

+ ρ12
∂2P̃

∂X1∂X2
+

1

2

∂2P̃

∂X2
2

+ [η1 + ρ12η2 + γ1]
∂P̃

∂X1
+ [η2 + ρ12η1 + γ2]

∂P̃

∂X2

+

[
1

2
η21 +

1

2
η22 + ρ12η1η2 + γ1η1 + γ2η2

]
P̃ . (D-3)

We may eliminate the ∂P̃ /∂X1 terms and ∂P̃ /∂X2 by choosing

η1 + ρ12η2 + γ1 = 0, and η2 + ρ12η1 + γ2 = 0, (D-4)

the simultaneous solution of which yields equations (52).
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With these choices of η1 and η2 equation (D-3) reduce to

∂P̃

∂τ
=

1

2

∂2P̃

∂X2
1

+ ρ12
∂2P̃

∂X1∂X2
+

1

2

∂2P̃

∂X2
2

+ ξP̃ , (D-5)

where, by use of equation (52) we obtained equation (53).

Next, we define u such that

P̃ (X1, X2, τ) = eξτu(X1, X2, τ), (D-6)

and calculate

∂P̃

∂τ
= eξτ

[
ξu+

∂u

∂τ

]
,

∂P̃

∂Xi

= eξτ
∂u

∂Xi

, (i = 1, 2)

∂2P̃

∂X2
i

= eξτ
∂2u

∂X2
i

, (i = 1, 2)

∂2P̃

∂X1∂X2

= eξτ
∂2u

∂X1∂X2

. (D-7)

It then follows that u(X1, X2, τ) satisfies the two-dimensional heat equation (C-1) for X1 and

X2 replacing by x1 and x2.

�

Appendix E. The Number of Images and the Correlation Coefficient ρ12

The method of images applied in Appendix D for the two absorbing barriers case is only valid

for certain values of the correlation coefficient ρ12. This appendix demonstrates the relationship

between the total number of images required to form a “closed-loop” and the corresponding

value of the correlation coefficient ρ12.

In order to obtain the number of images that form the closed-loop, it is convenient to transform

the volatility adjusted correlated log-leverage ratio variables x1 and x2 to the uncorrelated
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variables z1, z2 by setting

z2 = x2, (E-1)

z1 =
1√

1− ρ212
(x1 − ρ12x2). (E-2)

In order to eliminate the mixed derivative term from the heat equation (C-1), we make the

transformation

u(x1, x2, τ) = ũ(z1(x1, x2), z2(x2), τ), (E-3)

using the change of variables defined in equations (E-1)-(E-2).

Since

∂z2
∂x1

= 0 ;
∂z2
∂x2

= 1

∂z1
∂x1

= α ;
∂z1
∂x2

= −αρ,

with α = 1/
√
1− ρ2, we have

∂u

∂x1
= α

∂

∂z1
P̃

∂2u

∂x21
= α2 ∂

2

∂z21
ũ

∂u

∂x2
=

[
∂

∂z2
− αρ

∂

∂z1

]
ũ

∂2u

∂x22
=

[
∂2

∂z22
− 2αρ

∂2

∂z1∂z2
+ (αρ)2

∂2

∂z21

]
ũ

∂2u

∂x1∂x2
=

[
α

∂2

∂z1∂z2
− α2ρ

∂2

∂z21

]
ũ. (E-4)
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Substituting (E-4) into (C-1), yields

∂ũ

∂τ
=
1

2

[
α2 ∂

2

∂z21

]
ũ+

1

2

[
∂2

∂z22
− 2αρ

∂2

∂z1∂z2
+ (αρ)2

∂2

∂z21

]
ũ+ ρ

[
α

∂2

∂z1∂z2
− α2ρ

∂2

∂z21

]
ũ

=
1

2
α2∂

2ũ

∂z21
+

1

2

∂2ũ

∂z22
− αρ

∂2ũ

∂z1∂z2
+

1

2
(αρ)2

∂2ũ

∂z21
+ ρα

∂2ũ

∂z1∂z2
− (ρα)2

∂2ũ

∂z21

=

[
1

2
α2 +

1

2
(αρ)2 − (ρα)2

]
∂2ũ

∂z21
+

1

2

∂2ũ

∂z22
,

rearranging the term in the bracket on the right hand side
[
1
2
α2 + 1

2
(αρ)2 − (ρα)2

]
we find that

it equals 1
2
, therefore we obtain

∂ũ

∂τ
=

1

2

∂2ũ

∂z21
+

1

2

∂2ũ

∂z22
. (E-5)

The absorbing barriers x1 = 0 and x2 = 0 determine the barriers of the uncorrelated variables,

which become

z2 = 0, (E-6)

z1 = − ρ12√
1− ρ212

z2. (E-7)

The transformation of the barriers is also illustrated in Figure 12, and we note that the barrier

for z1 depends on z2 as well.

x1

x2

- z1

z2

Figure 12. The transformation of the barriers.

Since x1 and x2 are defined in the region x1, x2 ∈ (−∞, 0)× (−∞, 0) (represented by the non-

shaded region in the left hand panel in Figure 13), then for z1, z2 the regions of definition are



MODELLING DEFAULT CORRELATIONS - THE TWO-FIRM MODEL 49

z2 ∈ (−
√

1−ρ212
ρ12

z1, 0) and z1 ∈ (−∞,− ρ12√
1−ρ212

z2), and there is an angle φ′ (represented by the

angle φ′ in the right hand panel in Figure 13) between the two planes of the barrier z2 = 0 and

z1 = − ρ12√
1−ρ212

z2.

x1

x2

- z1

z2

�
�

�
��

φ′
R

φ

R

2π − φ′

?

Figure 13. The non-shaded area in the left hand panel represents the restricted
region in x1, x2 co-ordinates. After the transformation, the wedge shaped non-shaded
region forming the angle φ′ in the right hand panel represents the restricted region in
z1, z2 co-ordinates.

In the ensuing discussion it is important to distinguish between the polar angle φ (measured

clockwise from the positive z1 axis) and the angle φ′ (measured clockwise from the negative z1

axis), as shown in the right panel of Figure 13, and which are related by φ′ = φ− π.

Next, we relate the angle φ′ to the correlation coefficient ρ12. By simple trigonometry for a

point (z1, z2) in the line z1 = − ρ12√
1−ρ212

z2, we have

z1 = R cosφ, (E-8)

where R is the radius defined as R =
√
z21 + z22 .

Equation (E-8) may be written as

z1 =
√
z21 + z22 cosφ,

(E-9)

which by use of the relation (E-7) becomes

z21 =
(
z21 +

1− ρ212
ρ212

z21
)
cos2 φ, (E-10)
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from which we obtain

ρ12 = ± cosφ. (E-11)

From (E-11), we note that the condition −1 < ρ12 < 1 determines region of φ which is π < φ <

2π, hence the values of φ′ satisfy 0 < φ′ < π (since φ′ = φ− π). If ρ12 < 0 then 0 < φ′ < π
2
, if

ρ12 = 0 then φ′ = π
2
and if ρ12 > 0 then π

2
< φ′ < π as illustrated in Figure 14:

z1

z2

ρ12 < 0 ρ12 > 0
ρ12 = 0

φ′ R
j *

Figure 14. The relationship between the correlation coefficient ρ12 and the angle φ′.

Note that we can only form the closed loop of images for values of the angle φ′ that divide the

angle (2π−φ′) into an exact integer number. Denote by m the number of images, then in order

to form the closed-loop, the integer m must be related to the angle φ′ by

m =
2π − φ′

φ′
. (E-12)

We stress that m must be a positive integer, also the values of m that satisfy this relation are

the odd integers starting from 3. These values of m via equation (E-12), will then determine

the values of ρ12 for which the method of images can be applied.

For example, given φ′ = π
2
(at which ρ12 = 0), we require m = 3 images to form the closed-loop

(see Figure 15), that is if we successively reflect a point in the physical region in the mirrors

at the lines radiating from the origin at polar angles φ = 3π
2
, φ = 0, φ = π

2
and φ = π we will

arrive back at the original point.
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z1

z2

@@
@@
@@

@@ @@ @@

φ′

2π − φ′

?
6

-

�

Figure 15. To form the closed-loop for the angle φ′ = π
2 , three images are required.

Next consider φ′ = π
3
(at which ρ12 = −0.5) illustrated in Figure 16. The lines bounding the

image region (shaded in Figure 16) lie between the polar angles φ = π and φ = 4π
3

in the

clockwise direction. So the angle separating the two defining lines is 5π
3
(= 2π− φ′), which can

be divided precisely into five regions separated by lines at an angle of π/3 apart, as shown in

Figure 16. These lines are five mirrors in which the point in the physical region is successively

reflected to give the five image points. A further reflection in the line φ = π would take us back

to the original point, thus completing the loop. Figure 17 illustrates the situation for φ′ = π
4

(at which ρ12 = −0.707) for which seven mirrors, resulting in seven images, are required to

form a closed loop.

z1

z2

φ′

2π − φ′

R
�

6

I
	

?

Figure 16. To form a closed loop for the angle φ′ = π
3 , five images are required.
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z1

z2

φ′

2π − φ′

R

?
6

I

- �

�
	

Figure 17. To form a closed loop for the angle φ′ = π
4 , seven images are required.

We can now see that the general relationship between the value of ρ12 and the member of

images m needed to form a closed-loop is obtained by substituting (E-12) into (E-11), using

the relation φ′ = φ− π, to yield

ρ12 = − cos
( 2π

m+ 1

)
, (E-13)

for m = 3, 5, 7, . . . . The corresponding values of ρ12 are summarized in Table 1.

Appendix F. The Derivation of Equation (63)

Proposition 5. The partial differential equation (58) can be transformed by setting

P̄β(X1, X2, τ) = e
−X∗

1 (τ)
∂

∂X1
−X∗

2 (τ)
∂

∂X2 P̃ (X1, X2, τ), (F-1)

where the X∗
i (τ) is given by

X∗
i (τ) = −

∫ τ

0

γi(v)dv − βiτ, (i = 1, 2), (F-2)

and P̃ (X1, X2, τ) satisfies the partial differential

∂P̃

∂τ
=

1

2

∂2P̃

∂X2
1

+ ρ12
∂2P̃

∂X1∂X2

+
1

2

∂2P̃

∂X2
2

− β1
∂P̃

∂X1

− β2
∂P̃

∂X2

. (F-3)
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Proof: Apply the Baker-Campbell-Hausdorff formula in Appendix B, and after some algebraic

manipulations, we obtain

∂P̄β

∂τ
= e

−X∗

1 (τ)
∂

∂X1
−X∗

2 (τ)
∂

∂X2

[
∂P̃

∂τ
− ∂X∗

1 (τ)

∂τ

∂P̃

∂X1
− ∂X∗

2 (τ)

∂τ

∂P̃

∂X2

]
,

∂P̄β

∂Xi

= e
−X∗

1 (τ)
∂

∂X1
−X∗

2 (τ)
∂

∂X2
∂P̃

∂Xi

, (i = 1, 2),

∂2P̄β

∂X2
i

= e
−X∗

1 (τ)
∂

∂X1
−X∗

2 (τ)
∂

∂X2
∂2P̃

∂X2
i

, (i = 1, 2),

∂2P̄β

∂X1∂X2

= e
−X∗

1 (τ)
∂

∂X1
−X∗

2 (τ)
∂

∂X2
∂2P̃

∂X1∂X2

. (F-4)

Then equation (58) becomes

∂P̃

∂τ
− ∂X∗

1 (τ)

∂τ

∂P̃

∂X1
− ∂X∗

2 (τ)

∂τ

∂P̃

∂X2
=

1

2

∂2P̃

∂X2
1

+ ρ12
∂2P̃

∂X1∂X2
+

1

2

∂2P̃

∂X2
2

+γ1(τ)
∂P̃

∂X1

+ γ2(τ)
∂P̃

∂X2

. (F-5)

Define X∗
i (τ) for i = 1, 2 by setting

− ∂X∗
i (τ)

∂τ
= γi(τ) + βi, (F-6)

so that we obtained the dynamics of βi as shown in (61). Hence, the partial differential equation

(F-5) becomes

∂P̃

∂τ
+ γ1(τ)

∂P̃

∂X1
+ β1

∂P̃

∂X1
+ γ2(τ)

∂P̃

∂X2
+ β2

∂P̃

∂X2

=
1

2

∂2P̃

∂X2
1

+ ρ12
∂2P̃

∂X1∂X2
+

1

2

∂2P̃

∂X2
2

+ γ1(τ)
∂P̃

∂X1
+ γ2(τ)

∂P̃

∂X2
, (F-7)

which then turns out to be equation (F-3).

We note that the partial differential equation (F-3) can be further reduced to the two-dimensional

heat equation u. We apply the Proposition 4 illustrated in Appendix D for the transformation.

Simply replacing P̄ by P̃ , and replacing the coefficients γi by −βi (for i = 1, 2), we obtain

P̃ (X1, X2, τ) = eη̄1X1+η̄2X2+ξ̄τu(X1, X2, τ), (F-8)
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where η̄1, η̄2 and ξ̄ are constants given by (64)-(65), and u(X1, X2, τ) satisfies the two-dimensional

heat equation (C-1) (with X1 and X2 replaced by x1 and x2).

�

Combing the transformation in (F-1) and (F-8), we have related (58) to the two-dimensional

heat equation u in (C-1) (with τ replaced by ζ and x1, x2 by X1, X2) by

P̄β(X1, X2, τ) = e
−X∗

1 (τ)
∂

∂X1
−X∗

2 (τ)
∂

∂X2

[
eη̄1X1+η̄2X2+ξ̄τu(X1, X2, τ)

]
, (F-9)

= eη̄1[X1−X∗

1 (τ)]+η̄2[X2−X∗

2 (τ)]+ξ̄τu(X1 −X∗
1 (τ), X2 −X∗

2 (τ), τ), (F-10)

Substitution of the zero boundary conditions (59) and (60) into (F-10) yields the boundary

conditions for u as17

u(0, X2 −X∗
2 (τ), τ) = 0, (F-11)

u(X1 −X∗
1 (τ), 0, τ) = 0. (F-12)

The zero boundary conditions (F-11) - (F-12) for u occur when the value of the barriers are

equal to zero, and fulfill the conditions in (C-3)-(C-4) (replacing the space variables xi by

Xi −X∗
i (τ)). Therefore, the solution g̃ in (C-24) can be applied to obtain the solution for P̄β.

First, substitution of the initial condition P̄β(Y1, Y2) = 1 with X1(0) = Y1 and X2(0) = Y2 into

(F-10) to determines the initial condition of u, which is

P̄β(Y1, Y2) = 1 = eη̄1Y1+η̄2Y2u(Y1, Y2). (F-13)

Then, substitution equations (F-13) and (F-10) into equation (C-5), yields

e−η̄1[X1−X∗

1 (τ)]−η̄2[X2−X∗

2 (τ)]−ξ̄τ P̄β(X1, X2, τ)

=

∫ 0

−∞

∫ 0

−∞
g̃(X1 −X∗

1 (τ), X2 −X∗
2 (τ), Y1, Y2; τ)e

−η̄1Y1−η̄2Y2P̄β(Y1, Y2)dY1dY2, (F-14)

17We note that

P̄β(X
∗
1 (τ), X2, τ) = 0 = eη̄1·0+η̄2[X2−X∗

2
(τ)]+ξ̄τu(0, X2 −X∗

2 (τ), τ),

P̄β(X1, X
∗
2 (τ), τ) = 0 = eη̄1[X1−X∗

1
(τ)]+η̄2·0)+ξ̄τu(X1 −X∗

1 (τ), 0, τ).
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Substituting (C-24) into (F-14) and rearranging it, we obtained

P̄β(X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
eη̄1[X1−X∗

1 (τ)−Y1]+η̄2[X2−X∗

2 (τ)−Y2]+ξ̄τ
[
g(X1 −X∗

1 (τ), X2 −X∗
2 (τ), Y1, Y2; τ)

+

m∑

k=1

(−1)kgk(X1 −X∗
1 (τ), X2 −X∗

2 (τ), Y
k
1 , Y

k
2 ; τ)

]
P̄β(Y1, Y2)dY1dY2. (F-15)

where Y k
1 , Y

k
2 are given in (54)-(56).

Finally, by comparing equations (F-15) and (62), we obtained the solution of the joint transition

probability density function as shown in (63).

The following proposition gives the proof of equation (F-10).

Proposition 6. The expression

e
c1(τ)

∂
∂x1

+c2(τ)
∂

∂x2 f(x1, x2), (F-16)

may be written as

f(x1 + c1(τ), x2 + c2(τ)). (F-17)

Proof: Using Taylor series expansion, f(x1 + c1(τ), x2 + c2(τ))

f(x1 + c1(τ), x2 + c2(τ)) =

∞∑

n=0

∞∑

m=0

1

n!m!

∂n

∂xn1

∂m

∂xm2
[f(x1, x2)]c1(τ)

nc2(τ)
m,

=

[
∞∑

n=0

c1(τ)
n

n!

∂n

∂xn1

][
∞∑

m=0

c2(τ)
m

m!

∂m

∂xm2

]
f(x1, x2),

= e
c1(τ)

∂
∂x1 e

c2(τ)
∂

∂x2 f(x1, x2). (F-18)

The last equality follows from repeated application of the definition (B-4).

�
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Appendix G. The Numerical Implementation of Equations (57) and (66)

The solution for the joint survival probability (57) can be expressed in term of the cumulative

bivariate normal distribution function N2(·), which has the form

N2(a, b, ρ) =

∫ a

−∞

∫ b

−∞
n2(u, v, ρ)dvdu, (G-1)

where the bivariate normal density function is given by

n2(a, b, ρ) =
1

2π
√
1− ρ2

exp

(
−u

2 − 2ρuv + v2

2(1− ρ2)

)
. (G-2)

Consider (57) and rearrange it as

F (X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
eη1(X1−Y1)+η2(X2−Y2)+ξτg(X1, X2, Y1, Y2; τ)dY1dY2

+

m∑

k=1

(−1)k
∫ 0

−∞

∫ 0

−∞
eη1(X1−Y1)+η2(X2−Y2)+ξτgk(X1, X2, Y

k
1 , Y

k
2 ; τ)dY1dY2. (G-3)

Substituting the expression of the density function (51) into (G-3), the first integral in equation

(G-3) can be written as

eη1X1+η2X2+ξτ

∫ 0

−∞

∫ 0

−∞

1

2πτ
√

1− ρ212
exp

(
− φ(Y1, Y2)

2τ(1 − ρ212)

)
dY1dY2. (G-4)

where

φ(Y1, Y2) = AY 2
1 +BY 2

2 + CY1 +DY2 + EY1Y2 +H, (G-5)

and

A = 1, B = 1,

C = 2[η1τ(1− ρ212)−X1 + ρ12X2],

D = 2[η2τ(1− ρ212)−X2 + ρ12X1],

E = −2ρ12,

H = X2
1 +X2

2 − 2ρ12X1X2. (G-6)
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Then, equation (G-4) can be written in terms of the cumulative bivariate normal distribution

function N2(·) by the change of variables illustrated in Appendix H, hence (G-4) becomes

eη1X1+η2X2+ξτ

√
(1− ρ212)

AB(1− ρ̃2)
exp

(
− h̃

2τ(1− ρ212)

)
×N2(ã, b̃, ρ̃), (G-7)

where

ρ̃ = − E

2
√
AB

, (G-8)

ã =
√

2(1− ρ̃2) ũ1 =

√
A

τ

(
C

2A
− Eh2

4Ah1

) √
1− ρ̃2

1− ρ212
, (G-9)

b̃ =
√

2(1− ρ̃2) ṽ1 =
1√
τ

√
1 +

E2

4Ah1

h2

2
√
h1

√
1− ρ̃2

1− ρ212
, (G-10)

and

h1 = B − E2

4A
, h2 = D − CE

2A
, h̃ = H − C2

4A
− h22

4h1
. (G-11)

Next we consider the second integral in equation (G-3). We note that it is convenient to rewrite

Y k
1 and Y k

2 in terms of Y1 and Y2 by setting

Y k
1 = ak1Y1 + bk1Y2, Y

k
2 = ak2Y1 + bk2Y2. (G-12)

Substituting equations (G-12) into (54)-(56), we find that for k > 1

ak1 =





−ak−1
1 for k is odd,

ak−1
1 − 2ρ12a

k−1
2 for k is even,

ak2 =





ak−1
2 − 2ρ12a

k−1
1 for k is odd,

−ak−1
2 for k is even,

bk1 = ak−1
2 , bk2 = ak−1

1 , (G-13)

whilst for k = 1

a11 = −1 , b11 = 0,

a12 = −2ρ12 , b
1
2 = 1. (G-14)
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Then, the second integral in equation (G-3) can be expressed as

m∑

k=1

(−1)k
∫ 0

−∞

∫ 0

−∞
eη1(X1−Y1)+η2(X2−Y2)+ξτ

×gk
(
X1, X2, (a

k
1Y1 + bk1Y2), (a

k
2Y1 + bk2Y2); τ

)
dY1dY2. (G-15)

Following steps analogous to those shown in Appendix H, this can be written in terms of N2(·)

as

eη1X1+η2X2+ξτ
m∑

k=1

(−1)k

√
(1− ρ212)

AkBk(1− ρ̃2k)
exp

(
− h̃k
2τ(1 − ρ212)

)
×N2

(
ãk, b̃k, ρ̃k

)
. (G-16)

The expressions for ρ̃k, ãk, b̃k and h̃k are the same as in (G-8)-(G-11) but obtained by replacing

A, B, C, D and E by

Ak = (ak1)
2 + (ak2)

2 − 2ρ12a
k
1a

k
2,

Bk = (bk1)
2 + (bk2)

2 − 2ρ12b
k
1b

k
2 ,

Ck = X1(2ρ12a
k
2 − 2ak1) +X2(2ρ12a

k
1 − 2ak2) + 2η1τ(1− ρ212),

Dk = X1(2ρ12b
k
2 − 2bk1) +X2(2ρ12b

k
1 − 2bk2) + 2η2τ(1− ρ212),

Ek = 2(ak1b
k
1 + ak2b

k
2 − ρ12b

k
1a

k
2 − ρ12a

k
1b

k
2). (G-17)

The case for the time varying coefficients

We consider the approximate solution for the joint survival probability in (66) after some

algebraic manipulations, can be simplified to

Fβ(X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
g(X1 + d1(τ), X2 + d2(τ), Y1, Y2; τ)dY1dY2

+

m∑

k=1

(−1)k
∫ 0

−∞

∫ 0

−∞
gk(X1 + d1(τ), X2 + d2(τ), Y

k
1 , Y

k
2 ; τ)e

βk
aY1+βk

b
Y2dY1dY2, (G-18)

where

di(τ) =

∫ τ

0

γi(v)dv, (i = 1, 2), (G-19)
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and

βk
a = η̄1(a

k
1 − 1) + η̄2a

k
2, (G-20)

βk
b = η̄1b

k
1 + η̄2(b

k
2 − 1), (G-21)

and the ak’s and bk’s are given in (G-13)-(G-14).

Applying the same procedures as in Appendix H, the first integral in (G-18) can be rewritten

in terms of N2(·) as
√

(1− ρ212)

AB(1− ρ̃2)
exp

(
− h̃

2τ(1 − ρ212)

)
×N2(ã, b̃, ρ̃). (G-22)

The expressions for ρ̃, ã, b̃ , h1, h2 and h̃ are the same as in (G-8)-(G-11) after replacing C, D

and H with

C = 2(−X1 + ρ12X2),

D = 2(−X2 + ρ12X1),

H = X
2
1 + X

2
2 − 2ρ12X1X2, (G-23)

and Xi = Xi + di(τ) for i = 1, 2.

In a similar way to the calculation in the case of constant coefficients, we simplify the second

integral in (G-18) by rewriting Y k
1 and Y k

2 in terms of Y1 and Y2 using the expressions in (G-12),

and applying the same procedures used in Appendix H, we obtain

m∑

k=1

(−1)k

√
(1− ρ212)

AkBk(1− ρ̃2k)
exp

(
− h̃k
2τ(1− ρ212)

)
N2

(
ãk, b̃k, ρ̃k

)
. (G-24)
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The expressions for ρ̃k, ãk, b̃k and h̃k are the same as in (G-8)-(G-11) but obtained by replacing

A, B, C, D, E and H with

Ak = (ak1)
2 + (ak2)

2 − 2ρ12a
k
1a

k
2,

Bk = (bk1)
2 + (bk2)

2 − 2ρ12b
k
1b

k
2,

Ck = 2X1(ρ12a
k
2 − ak1) + 2X2(ρ12a

k
1 − ak2)− 2τ(1− ρ212)β

k
a ,

Dk = 2X1(ρ12b
k
2 − bk1) + 2X2(ρ12b

k
1 − bk2)− 2τ(1− ρ212)β

k
b ,

Ek = 2(ak1b
k
1 + ak2b

k
2 − ρ12b

k
1a

k
2 − ρ12a

k
1b

k
2),

H = X
2
1 + X

2
2 − 2ρ12X1X2, (G-25)

and Xi = Xi + di(τ) for i = 1, 2.

Appendix H. Expressing Eq (G-4) in terms of the Bivariate Normal Distribution

This appendix develops a scheme for the simplification of the expression for the joint survival

probability to the cumulative bivariate normal distribution function N2(.) that shown in (G-1)-

(G-2). This scheme involves five steps:

Step I. Consider the integral in the form

∫ 0

−∞

∫ 0

−∞

1

2πs
√
1− ρ212

exp

(
− φ(y1, y2)

2s(1− ρ212)

)
dy1dy2, (H-1)

where

φ(y1, y2) = Ay21 +By22 + Cy1 +Dy2 + Ey1y2 +H, (H-2)

and A, B, C, D, E and H are constants (defined by equation (G-6)).

Step II. Group the terms y1 and y2 by completing the square, then

φ(y1, y2) = Ay21 + y1(C + Ey2) +By22 +Dy2 +H. (H-3)
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By completing square, this last expression can be written as

φ(y1, y2) = A

(
C

2A
+

E

2A
y2 + y1

)2

+ h1

(
h2
2h1

+ y2

)2

+ h̃, (H-4)

where h1, h2 and h̃ are expressed in (G-11).

Step III. First we make the change of variable in the second term in equation (H-4) by setting

v2 = h1

(
h2
2h1

+ y2

)2

, (H-5)

which implies that

v =
√
h1

(
h2
2h1

+ y2

)
, (H-6)

so that

dv =
√
h1dy2, (H-7)

and the limits transform as

y2 → −∞ as v → −∞, (H-8)

y2 = 0 when v =
h2

2
√
h1
. (H-9)

Substituting from (H-6) (that is y2 = v√
h1

− h2

2h1
) into equation (H-4), and setting

φ(y1,
v√
h1

− h2

2h1
) to φ̂(y1, v), yields

φ̂(y1, v) = A

[( C
2A

− Eh2
4Ah1

+ y1
)
+

Eh2
4Ah1

v

]2
+ v2 + h̃. (H-10)

Next, we make the change of variable to y1 in the above equation by setting

u =
C

2A
− Eh2

4Ah1
+ y1, (H-11)

so that

du = dy1, (H-12)
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and take the limits

y1 → −∞ as u→ −∞, (H-13)

y1 = 0 when u =
C

2A
− Eh2

4Ah1
. (H-14)

Substituting from (H-11) into equation (H-10), and setting φ̂( C
2A

− Eh2

4Ah1
, v) to φ̃(u, v),

yields

φ̃(u, v) = Au2 +
E√
h1
uv + (1 +

E2

4Ah1
)v2 + h̃. (H-15)

Next, we make a further change of variables by setting

ũ =

√
A

2s(1− ρ212)
u, (H-16)

so that,

dũ =

√
A

2s(1− ρ212)
du, (H-17)

and the limits transform as

u → −∞ as ũ→ −∞, (H-18)

u =
C

2A
− Eh2

4Ah1
when ũ1 =

√
A

2s(1− ρ212)

(
C

2A
− Eh2

4Ah1

)
. (H-19)

We also make change of variable with respect to v by setting

ṽ =

√
1 + E2

4Ah1

2s(1− ρ212)
v, (H-20)

so that

dṽ =

√
1 + E2

4Ah1√
2s(1− ρ212)

dv, (H-21)
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and transform the limits

v → −∞ as ṽ → −∞, (H-22)

v =
h2

2
√
h1

when ṽ1 =

√
1 + E2

4Ah1
· h2

2
√
h1√

2s(1− ρ212)
. (H-23)

Substituting from (H-16) and (H-20) into equation (H-15), yield

φ(ũ, ṽ) = ũ2 +
E√
AB

ũṽ + ṽ2 + h̃. (H-24)

Substituting this into equation (H-1), we obtain the integral term

1√
AB

exp

(
− h̃

2s(1− ρ212)

)

×
√

1− ρ212
π

∫ ũ1

−∞

∫ ṽ1

−∞
exp

{
−
(
ũ2 +

E√
AB

ũṽ + ṽ2
)}

dũdṽ, (H-25)

where ũ1 and ṽ1 are the limits that are given in equations (H-19) and (H-23).

Step IV. We let ρ̃, ã and b̃ have the form expressed in (G-8), (G-9) and (G-10), respectively.

Then Eq (H-25) can be written as

√
(1− ρ212)

AB(1− ρ̃2)
exp

(
−h̃

2s(1− ρ212)

)
×
√

1− ρ̃2

π

∫ ã√
2(1−ρ̃2)

−∞

∫ b̃√
2(1−ρ̃2)

−∞

× exp
{
−
(
ũ2 − 2ρ̃ ũṽ + ṽ2

)}
dũdṽ. (H-26)

Step V. Note that the bivariate normal distribution function has the form

N2(a, b, ρ) =
1

2π
√

1− ρ2

∫ a

−∞

∫ b

−∞
exp

(
−u

2 − 2ρuv + v2

2(1− ρ2)

)
dudv,

and can also be expressed as

N2(a, b, ρ) =

√
1− ρ2

π

∫ a√
2(1−ρ2)

−∞

∫ b√
2(1−ρ2)

−∞
exp

{
−(x2 − 2ρxy + y2)

}
dxdy, (H-27)

by making the change of variables
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x = u/
√
2s(1− ρ2), (H-28)

and

y = v/
√

2s(1− ρ2). (H-29)

By comparing equation (H-26) to equation (H-27), we see that the integral (H-1) can

be expressed in terms of the N2(.) function as

√
(1− ρ212)

AB(1− ρ̃2)
exp

(
−h̃

2s(1− ρ212)

)
×N2(ã, b̃, ρ̃). (H-30)

Appendix I. An Alternating Direction Implicit Scheme for Equation (43)

In this Appendix, we outline the Douglas & Rachford (1956) scheme for the two-dimensional

partial differential equation with a cross-derivative term and time-dependent drift terms. We

consider the partial differential equation (43) (note that the joint survival probability for a

period of time ξ = t − t0 satisfies the identical partial differential equation (43), which can

apply the same scheme developed here by replacing τ with ξ). For the sake of notation, we

define u(x, y, τ) ≡ P̄ (X1, X2, τ), so that

∂u

∂τ
=

1

2

∂2u

∂x21
+ ρ12

∂2u

∂x1∂x2
+

1

2

∂2u

∂x22
+ γ1(τ)

∂u

∂x1
+ γ2(τ)

∂u

∂x2
, (I-1)

for τ ∈ (0, T ), x ∈ (−∞, 0), y ∈ (−∞, 0) and the operators

Jx =
1

2

∂2

∂x2
+ γ1(τ)

∂

∂x
, (I-2)

Jy =
1

2

∂2

∂y2
+ γ2(τ)

∂

∂y
, (I-3)

Jxy = ρ12
∂2

∂x∂y
, (I-4)

where the drift terms are defined in (47).
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We can write the partial differential equation (I-1) as

uτ = Jxu+ Jyu+ Jxyu. (I-5)

In order to define a numerical solution to solve equation (I-5), we need to truncate the spatial

domain to a bounded area given by {(x, y); xmin ≤ x ≤ 0, ymin ≤ y ≤ 0}. We also introduce a

grid consisting of points in the time interval and in the truncated spatial domain:

τj = j
T

Nτ

= 0, 1, . . . , Nτ , (I-6)

xi = i
xmin

Nx

= 0, 1, . . . , Nx, (I-7)

yk = k
ymin

Ny

= 0, 1, . . . , Ny. (I-8)

The time step size is ∆τ = T/Nτ , and spatial step sizes are ∆x = xmin/Nx and ∆y = ymin/Ny.

The value of u at a point of the grid is denoted as uji,k = u(xi, yk, τj).

We use the Douglas-Rachford scheme to obtain uj+1
i,k from uji,k, where j = 0, 1, 2, ..., Nτ . The

Douglas-Rachford scheme is

(
1−∆τ J̄x

)
u
j+1/2
i,k =

(
1 + ∆τ J̄y

)
uji,k +∆τ J̄xyu

j
i,k, (I-9)

(
1−∆τ J̄y

)
uj+1
i,k = u

j+1/2
i,k −∆τ J̄yu

j
i,k, (I-10)

where u
j+1/2
i,k is an intermediate value that links equations (I-9) and (I-10). A derivation of the

Douglas-Rachford method can be found in Strikwerda (1989) (Chapter 7.3).

Here, J̄x, J̄y and J̄xy denote the second-order approximations to the operators Jx, Jy and Jxy,

that is

J̄x =
1

2
δ2x + γ1(τj+1/2)δx, (I-11)

J̄y =
1

2
δ2y + γ2(τj+1/2)δy, (I-12)

J̄xy = ρ12δ
2
xy, (I-13)
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where

δxu
j
i,k =

uji+1,k − uji−1,k

2∆x
, δ2xu

j
i,k =

uji+1,k − 2uji,k + uji−1,k

∆x2
,

δyu
j
i,k =

uji,k+1 − uji,k−1

2∆y
, δ2yu

j
i,k =

uji,k+1 − 2uji,k + uji,k−1

∆y2
,

δ2xyu
j
i,k =

uji+1,k+1 + uji−1,k−1 − uji−1,k+1 − uji+1,k−1

4∆x∆y
. (I-14)

According to Douglas (1961), if time τ appears in the coefficients, the evaluation should be at

time τj+1/2 in order to preserve second order precision in time. Therefore, γ1(τ) and γ2(τ) are

evaluated at time τj+1/2 as γ1(τj+1/2) and γ2(τj+1/2) in (I-9) and (I-10).

Next, we describe the implementation of the alternating direction method.

First Stage

The difference equation (I-9) for the step from time j to time j + 1/2 can be written

p1u
j+1/2
i+1,k + p2u

j+1/2
i,k + p1du

j+1/2
i−1,k = p3u

j
i,k+1 + p4u

j
i,k + p3du

j
i,k−1 + ρ12U

j
ik, (I-15)

where

U j
i,k = ∆τδ2xyu

j
i,k, (I-16)

=
∆τ

4∆x∆y
(uji+1,k+1 + uji−1,k−1 − uji−1,k+1 − uji+1,k−1), (I-17)

for i = 1, . . . , Nx − 1, k = 1, . . . , Ny − 1 and

p1 = − ∆τ

2∆x2
[1 + γ1(τj+1/2)∆x], p2 = 1 +

∆τ

∆x2
, p1d = − ∆τ

2∆x2
[1− γ1(τj+1/2)∆x], (I-18)

p3 =
∆τ

2∆y2
[1 + γ2(τj+1/2)∆y], p4 = 1− ∆τ

∆y2
, p3d =

∆τ

2∆y2
[1− γ2(τj+1/2)∆y]. (I-19)
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Denote by ψj
i,k the right-hand side of equation (I-15), then we can express (I-15) as the matrix

system 


1 0 · · · 0

p1 p2 p1d . . . 0

0 p1 p2 p1d . . 0

. .

. .

0 . . 0 p1 p2 p1d

0 . . . . 0 1







u
j+1/2
Nx,k

u
j+1/2
Nx−1,k

.

.

.

u
j+1/2
1,k

u
j+1/2
0,k




=




ψj
Nx,k

ψj
Nx−1,k

.

.

.

ψj
1,k

ψj
0,k




, (I-20)

which because of the tridiagonal structure can be readily solved by Gaussian elimination. The

values of u
j+1/2
i,k turn out to be given by

u
j+1/2
i,k =

ri − p1u
j+1/2
i+1,k

ci
(I-21)

for i = 1, . . . , Nx − 1, where ci and ri are defined by the recurrence relations

ci = p2 −
p1p1d
ci−1

, ri = ψj
i,k − p1d

ri−1

ci−1
. (I-22)

for i ≥ 2 with initial values

c1 = p2, r1 = ψj
1,k − p1dψ

j
0,k. (I-23)

The initial values of ψ0
i,k are obtained from the solution for u0i,k at time τ0, which is determined

by the initial condition (44), that is

u0i,k = 1. (I-24)

Since, the first stage is implicit in the x direction, so we need to specify the boundary conditions

at x = 0 and x = xmin. Values at x = 0 can be obtained by the boundary condition (45) as

u
j+1/2
0,k = 0, (I-25)

for k = 0, . . . , Ny.
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If x → −∞, which means the leverage ratio tends to zero, and y is small compared to x. We

assume in this case the risk ratio function P̄ (−∞, y, τ) = 1. Therefore, the choice of xmin should

be sufficiently large so as the values of u(xmin, y(τ) is approximately equal to 1. Therefore,

u
j+1/2
Nx,k

= 1, (I-26)

for k = 1, . . . , Ny.

Second Stage

In the second stage, we use u
j+1/2
i,k to calculate uj+1

i,k . The difference equation (I-10) for the step

from time j + 1/2 to time j + 1 is

p5u
j+1
i,k+1 + p6u

j+1
i,k + p5du

j+1
i,k−1 = u

j+1/2
i,k + p7u

j
i,k+1 + p8u

j
i,k + p7du

j
i,k−1, (I-27)

for i = 1, . . . , Nx − 1, k = 1, . . . , Ny − 1 and

p5 = − ∆τ

2∆y2
[1 + γ2(τj+1/2)∆y], p6 = 1 +

∆τ

∆y2
, p5d = − ∆τ

2∆y2
[1− γ2(τj+1/2)∆y], (I-28)

p7 = − ∆τ

2∆y2
[1 + γ2(τj+1/2)∆y], p8 =

∆τ

∆y2
, p7d = − ∆τ

2∆y2
[1− γ2(τj+1/2)∆y]. (I-29)

Then the system (I-27) can be expressed in matrix form as




1 0 · · · 0

p5 p6 p5d . . . 0

0 p5 p6 p5d . . 0

. .

. .

0 . . 0 p5 p6 p5d

0 . . . . 0 1







uj+1
i,Ny

uj+1
i,Ny−1

.

.

.

uj+1
i,1

uj+1
i,0




=




ψ̃i,Ny

ψ̃i,Ny−1

.

.

.

ψ̃i,1

ψ̃i,0




, (I-30)

where we use ψ̃i,k to denote the right-hand side of equation (I-27). Therefore, the values of uj+1
i,k

can be obtained by solving the matrix using Gaussian elimination and the solution is

uj+1
i,k =

rk − p5u
j+1
i,k+1

ck

(I-31)
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Set w = 1.0,

while w ≥ 1

w = U2
1 + U2

2

Give a sign in[-1,1]

e′1 = 2U1 − 1,

e′2 = 2U2 − 1,

w′ = e′1 ∗ e′1 + e′2 ∗ e′2.

c =
√

−2 ln(w′)
w′

,

e1 = ce′1,

e2 = ce′2.

- -

Figure 18. An algorithm of the polar rejection method.

for k = 1, . . . , Ny − 1, where ck and rk are given by the recurrence relations

ck = p6 − p5d
p5
ck−1

, rk = ψ̃i,k − p5d
rk−1

ck−1

. (I-32)

with the initial value

c1 = p6, r1 = ψ̃i,1 − p5dψ̃i,0. (I-33)

This step is implicit in the y direction. Thus, we need to approximate the boundary conditions

for y = 0 and y = ymin. Similar to the first stage, values at y = 0 can be obtained by the

boundary condition (46), so that

uj+1
i,0 = 0, (I-34)

for i = 0, . . . , Nx.

If y → −∞, then x is small compare to y. We assume in this case that the function

P̄ (x,−∞, τ) = 1. Therefore, the choice of ymin must be sufficiently large so that the values of

u(x, ymin(τ) are approximately equal to 1, thus,

uj+1
i,Ny

= 1, (I-35)

for i = 1, . . . , Nx.

Appendix J. A Monte Carlo Scheme for the Joint Survival Probability

The Monte Carlo scheme consists three steps for simulation the system (69)-(70), namely
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Step 1. Divide the time interval [0,T] into n equal sub-periods per year. Set tj = j∆t for

j = 1, 2, ..., n∆t.

Step 2. Do the Monte Carlo simulations M(m = 1, 2, ...,M) times.

2.1. For the mth simulation, at the j th time step, generate independent normal random

numbers e1 and e2 from the distribution of N(0, 1).

2.2. Let xi = ln(Li/Li0), then (69) and (70) in discretized form become

x1(tj) = x1(tj−1) +

[
µ̃1 + ρ1rσ1σrb(tj−1)−

1

2
σ2
1

]
∆t + σ1

√
∆te1, (J-1)

x2(tj) = x2(tj−1) +

[
µ̃2 + ρ2rσ2σrb(tj−1)−

1

2
σ2
2

]
∆t + σ2

√
∆tê2, (J-2)

where ê2 = ρ12e1 +
√

1− ρ212e2.

Step 3. Check the boundary conditions: if xi(tj) ≥ 0 for either firm i, then joint survival prob-

ability for mth path at time tj is JSPm(tj)=0, and go to the next simulation m+1. Otherwise

JSPm(tj)=1, and go to next time step j+1.

Set JSP(tj) =
∑M

m=1JSPm(tj)/M , which is an approximate value for the joint survival proba-

bility.

Here e1 and e2 are normal random numbers that are calculated by the polar rejection method

suggested in Clewlow & Strickland (1998), and which is illustrated in Figure 18. The random

numbers U1 and U2 are generated by the Mersenne Twister18, it is a pseudo random number

generating algorithm developed by Makoto Matsumoto and Takuji Nishimura in 1997, and is

a very fast random number generator of period 219937 − 1.
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