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Abstract

This paper investigates the effect of operating leverage, and the subsequent abandonment option
available to managers, on the relationship between corporate earnings and optimal financial lever-
age, thereby providing an alternative (rational) explanation for the observed negative relationship
between these two quantities. Working in a dynamic capital structure setting, where corporate
earnings are modelled as an exogenous stochastic process, we explicitly add fixed operating costs
to the firm’s value optimisation. This introduces a degree of operating leverage and a non-zero
value to the implicit abandonment option of the firm’s manager. Solving for the firm’s optimal
timing and financing decisions we are able to derive the relationship between current corporate
earnings and optimal financial leverage for a large class of earnings uncertainty assumptions. The
theoretical implications are then tested empirically using a large selection of S&P 500 firms. Our
analysis reveals that the manager’s flexibility to abandon the project introduces nonlinearities into
the valuation that are sufficient to reconcile the trade-off theory with the empirically observed
negative earnings/financial leverage relationship. We further find theoretical and empirical evi-
dence of a positive relationship between operating and financial leverage. Previous studies have
used mean-reverting earnings as an explanation for the observed negative earnings/financial lever-
age relationship in a trade-off theory setting. We show that the relationship does not need to be
process specific. Instead, it is a direct result of the financial flexibility of managers.

Keywords: Trade-off theory, operating leverage, financial leverage, abandonment option
JEL classification:G32, G13, D21.

1. Introduction

Since the pioneering work of Miller and Modigliani (1958) the capital structure literature has
attempted to solve the “capital structure puzzle” (Myers, 1984). To date, two main theories have
emerged providing alternative perspectives on the optimal use of corporate debt. The static trade-
off theory (Scott, 1976) assumes that a manager sets a target debt ratio in order totrade off the
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benefits (tax advantages) and cost (bankruptcy cost) of debt financing. The more recent peck-
ing order theory is based on informational asymmetries and states that firms prefer internal over
external financing, and debt over equity in the case of external financing (Myers, 1984).

Whilst selected implications of the trade-offtheory have received empirical support (Frank
and Goyal, 2008), in its classic (static) form, the trade-off theory predicts a positive relationship
between earnings and leverage (Shyam-Sunder and Myers, 1999); a prediction which appears
inconsistent with the well-established empirical evidence of a negative earnings/leverage relation-
ship (Titman and Wessels, 1988, Rajan and Zingales, 1995).1 The pecking order theory, on the
other hand, predicts such an inverse relationship, leading researchers to conclude that this em-
pirical regularity is consistent with the pecking order theory and inconsistent with the trade-off

theory.
Due in part to such incongruent empirical evidence the static trade-off theory fell out of fash-

ion and researchers abandoned taxation and bankruptcy costs as the key drivers of capital structure
decision making; turning instead to agency conflict (Jensen and Meckling, 1976) and adverse se-
lection (Myers, 1984) explanations. In recent years, however, the static trade-off theory has been
revisited and extended to incorporate dynamic features into valuations and financing decisions.
Such models have become known asdynamictrade-offmodels.2 Importantly, these dynamic mod-
els depart from their static counterparts in many interesting ways, leading Frank and Goyal (2008,
p.194) to claim that “some of the most prominent objections to the trade-off theory have become
less compelling in light of more recent evidence and an improved understanding of some aspects
of the dynamic environment.”

This paper develops such a dynamic trade-off model and attests to the ability of the dynamic
trade-off theory to explain the observed leverage/earnings relationship. More specifically, we re-
visit the trade-off theory by incorporating additional managerial flexibility into firm valuations
which, in turn, influences optimal financing decisions.3 The key innovation of our model is the
introduction of fixed operating costs, and hence the possibility of negative future earning due to
such operating leverage. We find that in the presence of operating leverage the manager’s flex-
ibility to abandon operations in such loss-making scenarios introduces non-linearities into the
project valuation that are sufficient to reconcile the trade-offtheory with the observed negative
earnings/financial leverage relationship. This is the main theoretical contribution of our paper.
Our model also exposes the influence of the level of operating leverage on optimal financial lever-
age and serves managerial decision making by improving the understanding about the relationship
between earnings and leverage, its effect on optimal financing, project abandonment, and optimal
capital structure.

1The static trade-off theory predicts that more profitable firms should have more debt since expected bankruptcy
costs are lower and the expected tax shield is higher.

2The first dynamic models to consider tax versus bankruptcy were Kane, Marcus, and MacDonald (1984) and
Brennan and Schwartz (1984). Such models provide insight into both the dynamic nature of optimal leverage ratios
through time and across firms.

3We use a real options approach which explicitly takes into account the managerial ability to revise future operating
decision in response to the arrival of new information. Managers use real options as an analytical tool and as a language
in which to frame investment and financing problems (Triantis and Borision, 2001). Therefore it would appear that
such real optionality is important to consider from a managerial perspective.
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The current paper builds on a particularly appealing dynamic trade-off model introduced in
Leland (1994) which, using project value (earnings) as a lognormal stochastic state variable, pro-
vides optimal financial leverage implications; the conclusion in this lognormal setting being that
the optimal leverage ratio should beindependentof earnings. Subsequently, Sarkar and Zapatero
(2003) extended Leland (1994) and demonstrated that, in this dynamic trade-off setting, the earn-
ings/leverage relationship is dependent on the particular stochastic process assumed for the firm’s
earnings. Their application of a (non-negative) mean-reverting earnings process to the model of
Leland (1994) provides an inverse relationship between earnings and leverage in line with empir-
ical evidence. Furthermore, Sarkar and Zapatero (2003) state that, whilst it would be desirable,
a model that allows for negative earnings would not affect their main result. On the contrary, we
find that the inclusion of operating leverage (and hence possible negative earnings) turns out to
contribute significantly to thequalitative features of the model and produces the same negative
relationship without the need for the assumption of mean-reverting earnings.

The present paper can thus be seen as an extension to the models of Leland (1994) and Sarkar
and Zapatero (2003). We provide valuation formulae for a wider class of earnings uncertainty
processes and explicitly include fixed operating costs, allowing for the possibility of the earn-
ings process to become negative. We also add the appropriate risk-adjustment into valuations
to correctly account for the more complex risk-profiles induced by the manager’s flexibility to
abandon. Finally, we note that, like these previous models, we do not explicitly model agency
conflicts or asymmetric information, choosing instead to consider only taxes and financial dis-
tress, the main features of the trade-off theory. Our objective is to demonstrate that the injection of
operating leverage (fixed operating costs) into the dynamic trade-off setting is sufficient to explain
the observed leverage/earnings relationship; even in the presence of simpler (non mean-reverting)
earnings assumptions.

The rest of the paper is organised as follows: Section 2 outlines our extended model, deriv-
ing the valuation formulae and optimal financing behaviour. Section 3 investigates in detail the
resulting dependence of the leverage ratio on earnings and other key model parameters. Section 4
presents empirical tests of our model’s implications and Section 5 concludes.

2. The model

2.1. Assumptions

We model the representative firm as a single project which generates an uncertain income
stream over time. Since our aim is to explicitly examine the effect of operating leverage on the
firm’s optimal financing decisions we choose to model the firm’s per period earnings—interpreted
as EBIT+ Depreciation—asXt − C, hence we split earnings into a variablecontribution margin
(sales minus variable costs), denotedXt, andfixed costs, denotedC > 0; assumed to be constant
over time. In modelling the firm’s earnings this way we are able to incorporate the possibility of
negative earnings—even for a positive processX.4 In addition, we note that such modelling allows

4Explicitly modelling fixed costs also allows us to quantify thedegree of operating leverage(DOL) of the firm.
Recall from standard corporate financial theory thatDOL is the sensitivity of changes in earnings to changes in
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for uncertainty in both input and output prices since the processX is interpreted as the contribution
margin, i.e. revenue minus variable costs.

To provide some generality we model (Xt)t≥0 as the following diffusion process living on the
filtered probability space (Ω,P, {Ft}t≥0,F ) and described by the SDE

dXt = µ(Xt)dt+ σ(Xt)dWP
t , X0 = x, (1)

whereµ andσ are assumed to be continuous anddWP
t denotes the increment of the Wiener process

under thereal-world measure P. The most commonly used stochastic process in the literature is
geometric Brownian motion (GBM) since it often provides extremely tractable results. It has been
argued, however, that many financial time series, including corporate earnings, may exhibit mean-
reverting behaviour (not a feature of GBM). The class of diffusions in (1) encompasses many
models including GBM and mean-reverting dynamics.

We also incorporate the effect of the project’s risk on the firm’s optimal decision making via
the so-calledrisk-discounting effect highlighted by Sarkar (2003), where one must appropriately
risk-adjust the discount rate used for valuations. To do so, we assume the existence of a suitable
spanning asset (resulting in a complete market) and hence we apply contingent claims analysis
to price the firm’s real options. Such an analysis requires that expectations be taken under the
equivalentrisk-neutralmeasure Q and standard arguments (Dixit and Pindyck, 1994) reveal that
the dynamics under this measure are given by

dXt =
(

µ(Xt) − λρσ(Xt)
)

dt+ σ(Xt)dWQ
t , X0 = x, (2)

where we have effectively subtracted a risk-premium (λρσ) from the drift of the real-world price
dynamics. Hereλ represents the market price of risk andρ denotes the correlation between the
firm’s earnings and the market (cf. Dixit and Pindyck, 1994, page 148).

The firm issues perpetual debt with a per period coupon payment of $R which remains fixed
until debt is defaulted upon and hence the firm is abandoned; a time which occurs at the equity-
holders’ discretion. We will see that it is optimal for equityholders to default on the firm when
equity value is reduced to zero, a situation which occurs when the processX falls below some
thresholdxd (to be determined endogenously). Upon default, we follow Leland (1994) in assum-
ing that the bondholders receive control of the firm’s assets minus a fractional bankruptcy cost
(denoted byb). The presence of a tax advantage to debt financing is crucial in the trade-off model
and here we denote the effective tax rate (including any adjustments for personal taxes if neces-
sary) byτ. The tax scheme is further assumed to be symmetric in the sense that the firm will
receive a tax rebate should earnings become temporarily negative. All tax benefits are assumed
lost when equityholders default (Leland, 1994).

In what follows we appeal to some well known analytical probability results to derive ex-
pressions for the project and total firm values, expressions that are valid for the general class of
diffusion processes given by (1).

revenue/sales and in the present setting is given byDOL = X/(X − C), the contribution margin divided by EBIT+
Depreciation. We see that in the absence of fixed costsDOL = 1 and furthermore that, as the fixed costs increase, the
DOL increases, i.e.∂DOL/∂C ≥ 0.
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2.2. Project value (including abandonment)

In the absence of debt the valuation of the project is given by the expected value of the after-tax
earnings stream (in present value terms). The manager of the project also has the explicit option
to terminate the project, should it become optimal for them to do so. In this case the project value
is given by

V(x) = sup
Ta

E
Q
x

∫ Ta

0
e−rt(1− τ)(Xt −C)dt (3)

wherer is the constant risk-free rate andTa denotes the time for the project manager to close-down
(abandon) the project. In the absence of any fixed costs (i.e.C = 0) it is clear that the manager
will optimally keep the project running indefinitely since the earnings stream is never expected to
become negative (for a positive processX). Therefore, in this case the project’s expected lifespan
is infinite and the optimal time to exercise the option, denotedT∗a, will be∞. In such a case it can
be shown that, under the assumption of both GBM and the mean-reverting process of Sarkar and
Zapatero (2003), the project value will be linear in the initial value of the underlying process,x.
For positive fixed cost levelsC > 0, however, the ability to abandon the project will result in a
nonlinear (convex) project valuation. We will see later that this seemingly innocuous assumption
will have a large impact on the qualitative relationship between earnings and optimal financial
leverage.

To illustrate further the value of the abandonment option, and to aid with the solution to the
optimal stopping problem, we re-write (3) in the following form (appealing to the strong Markov
property of the processX)

V(x) = fu(x) + sup
Ta

E
Q
x

[

e−rTa(− fu(XTa))
]

(4)

where

fu(x) = E
Q
x

∫ ∞

0
e−rt(1− τ)(Xt −C)dt (5)

represents the value of the project if it wereneverabandoned. The second term in Eq. (4) is
therefore interpreted as the value of the abandonment option.

Given the infinite-horizon of the optimal stopping problem in Eq. (4) it can be shown that
the optimal stopping rule is independent of time and hence takes the form of a threshold strategy,
namelyT∗a = inf {t ≥ 0 |Xt = x∗a}. As such, the optimisation over stopping times becomes an
optimisation over threshold levelsxa, in other words

V(x) = fu(x) + sup
Ta

E
Q
x

[

e−rTa
(

− fu(XTa)
)]

= fu(x) +max
xa

{(

− fu(xa)
)

E
Q
x

[

e−rTa
]}

. (6)

Furthermore, it is well known from the theory of linear diffusions that the expected discount factor
is given by

E
Q
x

[

e−rTa
]

=

{

φ(x)/φ(xa) for x ≥ xa,

ψ(x)/ψ(xa) for x < xa,
(7)
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whereφ(x) andψ(x) are the unique (up to a linear scaling), positive, decreasing and increasing
solutions, respectively, of the linear second-order ODE5

1
2
σ2(x)u′′(x) + (µ(x) − λρσ(x)) u′(x) − ru(x) = 0. (8)

Putting everything together we see that the project value is given by

V(x) =

{

fu(x) − fu(x∗a)
φ(x)
φ(x∗a) , for x ≥ x∗a,

0, for x < x∗a,
(9)

where the optimal abandonment trigger levelx∗a solves the following equation

φ′(x∗a)
φ(x∗a)

=
f ′u(x∗a)
fu(x∗a)

, (10)

which is obtained from the first-order condition of the maximisation in Eq. (6).6

To aid with our interpretation of the results presented later we consider the risk of the project.
An application of Itô’s formula to (9) shows that the instantaneous variance of the unlevered project
(business risk) is given by

Var(dV/V) =

[

σXtV′(Xt)
V(Xt)

]2

dt. (11)

For linear project valuations (V(x) = Ax), the case when there is no value to the abandonment
option under a GBM assumption for example, it is clear that the variance of the project reduces
simply toσ2 and the risk of the project is the same as that of the underlying earnings (sinceC is
assumed constant). More importantly, we note that the risk of the project isindependentof X and
hence the current earnings level. On the other hand, nonlinearities in the project valuation intro-
duced by positive fixed costsC and the option to abandon results in an earnings level dependent
risk. Specifically, it can be seen that the instantaneous variance in (11) is decreasing inX. Hence,
as the earnings level decreases towards the abandonment trigger, the risk of the underlying project
is increased considerably. This increased risk needs to be incorporated correctly into valuations
and hence provides us with a strong motivation to incorporate the appropriate risk-discounting
effect (cf. Sarkar, 2003).

2.3. Firm value
In the presence of debt the total firm value is given by the sum of debt and equity claims.

The existence of a tax-shield suggests that the (levered) firm value should be greater than the
(unlevered) project value.

The value of equity,E, is given by the following optimal stopping problem analogous to the
value of the unlevered project

E(x) := sup
Td

E
Q
x

∫ Td

0
e−rt(1− τ)(Xt −C − R)dt, (12)

5These functions are often called thefundamentalsolutions to such ODEs. For more details on these and the
identity (7) see Chapter II, Part 11 of Borodin and Salminen (2002).

6The second-order condition can also be verified on a case-by-case basis.
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where we recall thatRdenotes the debt coupon payment level. Comparison of (12) and (3) reveals
that the equity valueE is simply given by the unlevered project valueV but with the fixed costC
replaced withC + R, which upon settingfℓ(x) = fu(x) − (1− τ)R/r, yields

E(x) =






fℓ(x) − fℓ(x∗d)
φ(x)
φ(x∗d) , for x ≥ x∗d,

0, for x < x∗d,
(13)

where the optimal default trigger levelx∗d solves the following equation

φ′(x∗d)

φ(x∗d)
=

f ′
ℓ
(x∗d)

fℓ(x∗d)
. (14)

To value debt we note that the periodic cash flow is equal to the coupon paymentR, provided
that the equityholders do not default. In the case of default, debtholders receive the value of the
unlevered project less bankruptcy costs. Therefore, the debt value is given by

D(x) := E
Q
x

[∫ T∗d

0
e−rtRdt+ e−rT ∗d(1− b)V(XT∗d

)

]

(15)

whereT∗d denotes the equityholders’ optimal default time. Note that this is no longer an opti-
misation problem since the debtholders do not have any direct influence on the time of default.
Accordingly, the debt value can be shown, using (7), to be

D(x) =






R
r +

(

(1− b)V(x∗d) −
R
r

)
φ(x)
φ(x∗d) , for x ≥ x∗d,

(1− b)V(x), for x < x∗d.
(16)

We denote byFV the total firm value which is given byFV := E+D. Substitution of (13) and
(16) into this definition and after some labourious calculations we arrive at

FV(x) = V(x) +
τR
r

(

1−
φ(x)
φ(x∗d)

)

− bV(x∗d)
φ(x)
φ(x∗d)

. (17)

Therefore, we find that the value of the levered project can be expressed as the sum of three
components. The value of the unlevered project, the expected additional benefit provided by debt
in the form of a tax shield, and the expected cost of bankruptcy. This representation forms the
basis for the trade-off theory of optimal capital structure (Baxter, 1967, Kraus and Litzenberger,
1973, Scott, 1976).

To implement the above valuations for alternative assumptions on the earnings distribution we
note that it is simply a matter of determining the correct functionφ (via Eq. (8)), computing the
auxiliary functionsfu and fℓ, and hence solving (10) and (14) to determine the optimal abandon-
ment and default trigger levels,x∗a andx∗d, respectively. In this paper we choose to illustrate the
valuations using the most commonly used distributional assumption of geometric Brownian mo-
tion (GBM) in which caseµ(x) = µx andσ(x) = σx. We see that in this caseφ(x) = x−γ where
−γ is the negative solution to the quadratic1

2σ
2γ(γ − 1) + (µ − λρσ)γ − r = 0. Furthermore,
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fu(x) = (1− τ)
(

x
r+λρσ−µ −

C
r

)

and recall thatfℓ(x) = fu(x) − (1− τ)R/r. Using these two results we
observe that in the case of GBM, equations (10) and (14) can be solvedexplicitly to obtain

x∗a = KC and x∗d = K(C + R), where K =
γ

1+ γ

(

1−
µ − λρσ

r

)

. (18)

Substitution of the above expressions into (9), (13), (16) and (17), provide the explicit valuation
formulae under GBM dynamics.

Throughout the remainder of the paper we will illustrate the model by choosing a set of ‘base
case’ parameters associated with the GBM assumption for the processX. The chosen parameters
are:µ = 7%,σ = 40%,λ = 0.4, ρ = 1, r = 5%,τ = 15%,b = 0.5, C = $0.75, andx0 = $2.

*** Insert Figure 1 about here ***

Figure 1 shows the decomposition of total firm value into its various components (for a fixed
couponR); we show the decomposition according toFV = E + D in Figure 1(a) and according
to (17) in Figure 1(b). We note the convexity and concavity of the equity and debt valuations,
respectively, and that as the level of earnings rise the expected benefit from the tax shield rises and
the expected bankruptcy costs fall—potentially providing more incentive to exploit the tax shield
by taking on more fixed financing costs. We also observe that the firm value is indeed greater than
that of the underlying project, but only for sufficiently high levels of current earnings in this fixed
coupon example.

2.4. Optimal financing decisions
In addition to determining the optimal time at which to default on the up-and-running project,

equityholders also have the flexibility to choose the level of debt employed in the firm’s capital
structure. Consistent with the literature, we assume that equityholders chose the coupon rateR,
and hence the level of debt, in order to maximisetotal firm valuesince the debt is perpetual and
taken on board before the firm is initiated.7 The optimal coupon is thus defined as

R∗ := arg max
R
{FV(x,R)} .

We see from (17) that an increase in the couponR increases the expected benefits of the tax shield
but also increases the expected costs of bankruptcy. The trade-off of these two components clearly
results in a unique optimal coupon policy. Furthermore, using (17) we see (after differentiation
and some judicious manipulation) thatR∗ is implicitly defined by the first-order condition equation

φ(x∗d(R∗))

φ(x)
= 1− BR∗

∂x∗d
∂R∗

(R∗)
f ′
ℓ
(x∗d(R∗))

fℓ(x∗d(R∗))
, (19)

where we have setB := 1 − b(1 − τ−1) ≥ 1 and we have also made clear the dependence of the
optimal default triggerx∗d on the optimal couponR∗. Eq. (19) is particularly difficult to analyse in
general sincex∗d may only beimplicitly defined via Eq. (14). In such cases we resort to numerical
investigation of the optimal coupon rate using standard root-finding algorithms applied to (19).

7Recall that the equityholders subsequently default in order to maximiseequity value only(Leland, 1994).
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Remark1. We remark that in the GBM case, whenx∗d has anexplicit solution, given by (18), Eq.
(19) can be investigated further and in the zero operating leverage situation of Leland (1994), in
whichC = 0, Eq. (19) can actually be solved explicitly to obtain

R∗ =
1
K

(1+ γB)−
1
γ x. (20)

WhenC > 0 we note thatx∗d = K(C + R∗) but that no such explicit solution to (19) exists. We
therefore resort to numerical root-finding to determineR∗ in this case also.

As we will see in the following section, the dependence of the optimal coupon on the current
earnings level is an important factor in determining the earning/leverage relationship. Leland
(1994) finds that the optimal coupon is directly proportional to the current earnings, consistent
with the finding above—Eq. (20). Sarkar and Zapatero (2003), on the other hand, find that when
earnings are mean reverting the optimal coupon is very insensitive to the current earnings level.

3. The earnings / leverage relationship

We now explore the theoretical implications of our model (and the inclusion of operating lever-
age) on the relationship between current earnings and the optimal financial leverage ratio denoted
L∗ which we define as

L∗(x) =
D(x,R∗(x))

FV(x,R∗(x))
,

for x ≥ x∗d.
8 We note that for a single firm the dependence of leverage on earnings is the same as the

dependence of leverage on the contribution marginx since the fixed costsC are assumed constant.9

We also note that, economically, as the level of the earnings (contribution margin) increases it has
both a direct effect on equity and debt (and hence total firm) valuations, through higher expected
total future profits etc., and a further indirect effect on the these valuations via the optimal coupon’s
dependence on the current earnings level. The notation used here, e.g.D(x,R∗(x)), makes these
two dependencies clear, and in order to investigate the earnings/leverage relationship it suffices
to evaluate the functionL∗(x). In particular, we are interested in its gradient and under what
circumstances this gradient is negative.

Rather than work directly withL∗ as defined above we will find it easier, and more intuitive,
to use the debt-to-equity ratio, defined asL̃∗(x) := D(x,R∗(x))/E(x,R∗(x)). It can be easily shown
(sinceFV = D + E) that

L∗(x) =

(

1+
E(x,R∗(x))
D(x,R∗(x))

)−1

= (1+ L̃−1
∗ (x))−1

and hence the leverage ratioL∗ isdecreasingin x (and hence earnings) whenever the debt-to-equity
ratio L̃∗ is alsodecreasingin x. Furthermore, if we wish to determine ifx 7→ L̃∗(x) is decreasing

8Note that, trivially, the leverage belowx∗d is equal to one since the firm has no equity.
9When comparing different firms however, as we will do empirically in Section 4, we note that the earn-

ings/leverage relationship will also depend on the relationship between the level of fixed costs and optimal leverage.
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we can differentiate fully with respect tox to obtain

L̃′∗(x)

L̃∗(x)
=

(

1
D
∂D
∂x
−

1
E
∂E
∂x

)

︸              ︷︷              ︸

Valuation Effect

+

(

1
D
∂D
∂R∗
−

1
E
∂E
∂R∗

)

R′∗(x)
︸                        ︷︷                        ︸

Financing Effect

. (21)

The two components of this full derivative provide us with a tool to understand the total effect
of earnings on optimal leverage. The first component, quantified by the first term in brackets,
represents therelativeeffect of the valuations of both debt and equity, for afixedcouponR∗, as the
level of earnings change. It is clear that the value of both debt and equity increase as the current
earnings increase,10 however the relative sizes of the increases (i.e. elasticity) is the important
factor in determining the first contribution to the debt-to-equity ratio. It can be shown that the
first term is negative since the elasticity of the equity value to current earnings is higher than
that of debt; hence for a $1 change in earnings the equity value changes by more than the debt
value (in percentage terms).11 We therefore conclude that, in the absence of the indirect effect of
current earnings on the optimal coupon (the second term above), the debt-to-equity ratio would be
decreasing inx, and hence current earnings.

In general, however, as earnings change it may become optimal for the firm to have a different
coupon levelR∗ in order to optimise total firm value and so this additional effect on the optimal
couponR∗ will contributes to the overall dependence of leverage on current earnings. This is
the effect quantified by the second component on the right hand side in Eq. (21). We note that
differing coupon levels influence the value of equity and debt in two ways: the first is via a change
in the actual cashflows to the equityholders and debtholders, and the second is via its effect on
the optimal default strategy of the equityholder. Both effects need to be taken into account when
determining the effect earnings level has on optimal leverage. It can be seen that the sign of the
second term in brackets in (21) is positive since, ceteris paribus, equity is a decreasing function,
and debt an increasing function, of the coupon levelR∗. We therefore would conclude that the
debt-to-equity ratiõL∗ is decreasing inx if R′∗ ≤ 0. Unfortunately, this is not the case—in fact we
will see below thatR∗ is increasing inx—and as such the overall effect of earnings on leverage
remains analytically ambiguous; hence we resort to numerical investigations (see Section 3.1).

Expression (21) does, however, provide additional insights into existing results from the liter-
ature. For the mean-reverting case of Sarkar and Zapatero (2003), these authors demonstrate that
the long-run level of earning (a parameter in the mean-reverting process) dominates financing de-
cisions and so the optimal coupon is extremely insensitive to the current level of earnings, hence
R′∗ ≈ 0. In this case it is clear from (21) that an inverse relationship between current earnings
and optimal leverage will ensue. Furthermore, we also observe that in the GBM setting of Leland

10We note further that a change in earnings affects the valuation of debt and equity in subtlety different ways. For
equity it is clear that a higher current level of earnings results in a higher present value of total future earnings (all
else fixed) and hence contributes to a higher valuation. However, since the level of the cash-flow stream to debt is
fixed, debt valuation is only affected indirectly by the current level of earnings in so far as current earnings affect the
expected time until the equityholders default on the levered project. A higher level of current earnings prolongs the
expected lifespan of the project and hence the present value of the total cash-flow stream to debt is also increased.

11For a proof see Appendix A.
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(1994) the magnitude of the second term in (21)exactlybalances that of the first, resulting in a con-
stant debt-to-equity (and hence leverage) ratio. This finding should be seen as a consequence of a
fortuitous interaction of a linear valuation of the underlying project and the particular assumption
of the earnings process (GBM), rather than reflecting economic reality. In general, the two terms
in (21) will not balance exactly. We will see below that, for the simple GBM case, the inclusion of
fixed operating costs results in a positive relationship between the optimal couponR∗ and current
earnings but that this relationship is nonlinear (and in fact concave), i.e.R′∗ ≥ 0 andR′′∗ , 0.

To investigate the sign ofR′∗ more closely we differentiate (19) implicitly with respect tox—
noting the dependence ofx∗d onR∗ which is itself dependent onx. The sign of the resulting expres-
sion cannot be determined in general but for the case of GBM we observe that the aforementioned
differentiation yields

R′∗(x) =
K−γ

(
C+R∗

x

)1−γ

1+ B
[

C+γR∗
C+R∗

] , (22)

which can be seen to be positive for all parameter values. Hence, even in the presence of operating
leverage, it is optimal to take on a higher coupon payment as the current level ofx, and hence
earnings, increase.

Remark2. To check for consistency we observe that forC = 0 Eq. (22) reduces to the ODE

R′∗(x) = K−γ

1+γB

(
R∗
x

)1−γ
which admits the linear solutionR∗(x) = K−1[1 + γB]−

1
γ x—corroborating Eq.

(20).

3.1. Numerical Results

This section illustrates our model results fully in the case of GBM forC , 0 and points briefly
to further results from the mean-reverting world. In particular, we demonstrate numerically that
the derivative in Eq. (21) is indeed negative forC ≥ 0 and hence a negative relationship exists
between earning and financial leverage in the presence of fixed costs. Note that our numerical
results where repeated for the entire range of parameter values, finding this result to be robust to
changes in the base case parameters.

*** Insert Figure 2 about here ***

Figure 2(a) shows the dependency of the optimal coupon on the current level ofx (contribution
margin) for varying degrees of fixed costsC (operating leverage). As expected from Eq. (20)
we observe that, in the absence of operating leverage, the optimal coupon is linear. Furthermore,
we see that the inclusion of operating leverage produces an increasing concave relationship and
that the optimal coupon is in fact zero when the current level ofx is equal to the abandonment
trigger x∗a. This result is perfectly intuitive, since when earnings are so low that it is optimal for
the underlying project to be abandoned there is no value in the project and taking on any debt,
however small, will produce negative equity values.

Figure 2(b) shows the relationship between operating leverage (C) and the optimal coupon,
for various (fixed) levels of the current contribution marginx. We note that since the contribution
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margin is fixed an increasingC would result in a decrease in corporate earnings. Perhaps coun-
terintuitively, we observe that the relationship betweenC andR∗ is in fact non-monotonic, with
the optimal coupon actually increasing initially as the degree of operating leverage increases and
hence earnings decrease. A maximum optimal coupon is attained and then the optimal coupon
declines as the fixed costs become too high and earnings too low. This result highlights the deli-
cate relationship between operating leverage and optimal financing decisions. The source of this
non-monotonicity is left for future research as it is not the focus of the present study, however the
explanation no doubt lies in the trade-off between the tax-shield and the costs of bankruptcy.

*** Insert Figure 3 about here ***

Next, Figure 3 shows our main theoretical result, the dependency of the optimal leverage on
current earnings level, when its affect on the optimal coupon is correctly taken into account. We
can see clearly, from Figure 3(a), the negative relationship between the contribution marginx and
the optimal leverage when fixed costs are added to the underlying project (C > 0). When such
operating leverage is removed, the optimal leverage becomes independent ofx (and hence earn-
ings) consistent with Leland (1994). In addition, we show in Figure 3(b) the relationship between
the optimal financial leverage and the level of the fixed costs for various (fixed) current levels of
the contribution margin. We see that, despite the non-monotonic behaviour of the optimal coupon
rate in the level ofC, the relationship between optimal financial leverage andC is monotonic
and increasing. This is due to the additional effects of operating leverage on project risk, equity-
holders’ optimal timing, and therefore the market valuations of both debt and equity. These two
observations lead us to highlight the following result:

Result 1. In the presence of non-zero fixed costs the optimal financial leverage is a decreasing
function of the contribution margin and an increasing function of operating costs. Hence there is
a negative relationship between the optimal financial leverage and the current level of earnings
(irrespective of whether earnings change due to a change in the contribution margin or fixed
costs).

We also observe from Figure 3(b) that for a given level of the contribution marginx there exists
a maximum level of operating leverage (fixed costC) which the project can bear. At this maximum
level, the underlying project has a valuation of zero and should be abandoned at the current level
of x. Intuitively, this capacity for operating leverage is increased when the level of the current
contribution margin is higher.

Figure 3(b) also provides the following result in regards to the shape of the relationship be-
tween financial leverage and both the contribution marginx and fixed costsC:

Result 2. The optimal financial leverage L∗ is aconvexfunction of the contribution margin x and
a concavefunction of the level of the fixed costs C.

Finally, while we do not present the results here in the interests of brevity, we note that the
inclusion of a non-zero fixed costs (C > 0) into the mean-reverting earnings model of Sarkar and
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Zapatero (2003) provides consistent results to those described above.12 Since mean reversion and
operating leverage both result in a decrease of optimal financial leverage as earnings increase this
relationship is maintained in the presence of the two effects. It can be seen, however, that for
levels of the fixed costs sufficient to introduce the possibility of abandonment, the insensitivity of
the optimal couponR∗ to changes in current earnings (Sarkar and Zapatero, 2003) is no longer
observed. In the presence of abandonment, the additional risks introduced into the valuation lead
to significant earnings dependency in the optimal coupon, indicating that the long-run earnings
level is no longer the dominant factor in the mean-reverting firm’s optimal financing decisions.13

3.2. Empirical implications

Our model renders a number of empirical predictions regarding the relationship between fixed
costs (operating leverage), corporate contribution margins and earnings, and financial leverage.
The model predicts an inverse (convex) relationship between the current level of the contribution
margin and a firm’s financial leverage. It also suggests that a firm’s financial leverage would be
higher for those companies with a higher level of fixed cost, but that this relationship is a concave
one.14 Whilst these implications are drawn from a model of a single firm, it is clear that the
cross-sectional effects of the model parameters on financial leverage would also exhibit the same
relationships and hence our model implications are tested in the cross-section.

4. Empirical Findings

This section provides some empirical evidence in support of our model implications. There
have been numerous cross-sectional tests of capital structure theories examining whether leverage
ratios vary across firms as the theory predicts. The literature is extensive and we do not attempt
to reproduce it here, instead we focus on the new implications of our model in regards to the
influence of the contribution margin and fixed costs on a firm’s financial leverage.15 We point the
interested reader to Frank and Goyal (2008)—Section 3.2 in particular—and the references therein
for details of related empirical studies.

Our empirical analysis consists of three empirical model specifications regressing a firm’s
market leverage (LEVERAGE) on various proxies for our model parameters. Since our theoretical
model relates to the market valuation of both debt and equity, our model implications are valid for
themarketleverage ratio. Recent literature has noted the importance of such valuation components
and empirical attention has shifted towards explanations of market leverage (as opposed to book
leverage) in recent years. For example, Welch (2004) argues that market equity is much preferable

12Results are available from the authors upon request.
13Furthermore, it was observed that for certain parameter regimes under both mean-reversion and operating leverage

it was possible to obtain a U-shaped leverage pattern in current earnings. This supports the difficulties discussed above
in proving the decreasing relationship in full generality. Such non-linearity is left for the subject of future research.

14In full, the model predicts that financial leverage is an increasing function of the discount parameters (λ, ρ, and
r), the tax rate (τ), and fixed costs (C), and a decreasing function of the process parameters (µandσ), bankruptcy
costs (b), and the contribution margin (x).

15To our knowledge there is no existing empirical analysis of the effect of fixed costs on leverage in a trade-off
theory context.
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over book equity since book equity is merely a ‘plug figure’. However, for a large number of firms
the market value of debt is not available since the debt instruments employed are not publicly
traded. We therefore proxy the market leverage as the book value of long-term-debt dividend by
sum of the book value of long-term-debt and the market value of equity (cf. Titman and Wessels,
1988).

Our regressors include DRIFT and SIGMA, which are parameter estimations of the drift and
volatility terms,µ andσ, describing the GBM dynamics of a firm’s contribution margin. We also
control for each firm’s effective corporate tax rate (TAXRATE) and we proxy the correlationρ

used for risk-adjustment with the regressor BETA, an estimate of the firm’s market risk. We also
choose return-on-assets, ROA [=(EBIT+Depreciation)/Total Assets], to represent a normalised
earnings measure for the cross-sectional comparison of firms. To proxy a firm’s fixed costs we
choose SG&A (Sales, General & Admin), again normalised by total assets.16 Finally, CMARGIN
is the firm’s contribution margin normalised by total assets. Similar to Sarkar and Zapatero (2003)
we note that there are no suitable proxies for the bankruptcy costb and that there is no variation in
r or λ across firms. We therefore omit these variables from our empirical tests.

As a benchmark we first perform the regression17

LEVERAGEi,t = β0+β1DRIFTi,t+β2SIGMAi,t+β3TAXRATE i,t+β4BETAi,t+β5ROAi,t+ǫi,t (23)

to determine whether or not the well documented negative relationship between earnings and lever-
age is present in our dataset. Our main empirical predictions are tested using two model specifica-
tions. The first builds on the benchmark above and is given by

LEVERAGEi,t = β0 + β1DRIFTi,t + β2SIGMAi,t + β3TAXRATE i,t

+ β4BETAi,t + β51CMARGINi,t + β52SG&Ai,t + ǫi,t (24)

where we have effectively split earnings into the contribution margin and SG&A, analogous to our
theoretical contribution. Note that following the theoretical model predictions we expectβ1, β2,
β5, andβ51 to be negative andβ3, β4, andβ52 to be positive.

Finally, we test our model’s implications in regards to the nonlinearity of the relationships
between leverage and the contribution margin and fixed costs by performing the further augmented
regression

LEVERAGEi,t = β0 + β1DRIFTi,t + β2SIGMAi,t + β3TAXRATE i,t + β4BETAi,t + β51CMARGINi,t

+ β52SG&Ai,t + β61CMARGINsqi,t + β62SG&Asqi,t + ǫi,t (25)

where CMARGINsq and SG&Asq denote the square of the variables CMARGIN and SG&A, re-
spectively. The theoretical model predicts LEVERAGE to have a convex relationship with CMAR-
GIN and a concave relationship with SG&A and hence we expectβ61 > 0 andβ62 < 0.

In the following we discuss sample selection and provide descriptive statistics of our sample.
We then provide empirical analysis of the benchmark model (23) and the two specifications of our
main model (24) and (25), coupled with the necessary robustness checks.

16Hence we are implicitly assuming that such costs are inelastic to changes in earnings.
17Note that the subscripts refer to firmi and yeart, respectively.
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4.1. Data, variables, and descriptive statistics

From COMPUSTAT we obtain quarterly financial data for firms in the S&P 500 from 1996 to
2011 to estimate the GBM parameters of the contribution margin process. This provides an initial
sample of 48,899 quarter observations of 968 S&P 500 firms. Following Sarkar and Zapatero
(2003) our process parameter estimations for each year from 2006–2011 are based on 48 quarters
whereby firms are excluded with less than 40 consecutive observations; resulting in a final sample
of 43,760 quarter observations of 718 S&P 500 firms between 1996 and 2011.18

Annual financial reporting data for S&P 500 companies between 2006 and 2011 are also col-
lected from COMPUSTAT, with matching firm level tax data provided by Professor John Gra-
ham.19 Similar to Sarkar and Zapatero (2003) we conduct cross-sectional regressions for two con-
secutive periods using firms that are listed in the S&P 500 index in both years; two-year periods
allow for consistent sub-samples without sacrificing observations over several years. In particular,
our analysis focuses on three sub-periods which are pre-global financial crisis (2006-2007), finan-
cial crisis (2008-2009), and post-financial crisis (2010-2011). These periods are chosen to assess
the robustness of our theoretical model predictions before, during, and after the crisis.

After removal of missing observations this results in annual observations ranging from 213 to
271 between 2006 and 2011. We exclude missing values in either year of a two-year sub-period
which leaves us with final sample sizes of 200 (2006–2007), 248 (2008–2009) and 258 (2010–
2011) firms.

*** Insert Table 1 about here ***

Table 1 shows the summary statistics for all firms used in at least one of the three two-year
periods; 293 firms in total.

4.2. Results, robustness checks, and discussion

Table 2 reports the estimation results of Eq. (23). Importantly, and as expected, the relationship
between earnings (ROA) and leverage is statistically significant and negative with the estimated
coefficient being highly significant at the 1% level in every year. The explanatory power observed
ranges from 27% to 43%, consistent with the findings of Frank and Goyal (2009) who find that
the (six) factors significant in explaining leverage ratios account for approximately 30% of cross-
sectional variation.

*** Insert Table 2 about here ***

18We note that the estimation procedure is standard due to the normality of the contribution margin log-differences
under the assumption of GBM dynamics. Further details are omitted in the interests of brevity but are available from
the authors upon request.

19Available viahttps://faculty.fuqua.duke.edu/~jgraham/taxform.html.
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*** Insert Table 3 about here ***

Table 3 shows the results of splitting earnings into the contribution margin and fixed costs, as
described by Eq. (24). As expected, CMARGIN coefficients are negative and SG&A coefficients
are positive, all significant at the 1% level with the exception of a 5% significance for SG&A in
2006 and a 10% significance in 2009.20

The results for the remaining model parameters used as control variables are somewhat mixed.
There is a consistent negative relationship between the growth of the contribution margin (DRIFT)
and leverage as predicted, with significance in all years aside from the most recent 2010–2011
period—indicating possible after-effects of the financial crisis on this relationship.21 In contrast,
the SIGMA coefficient is not significant in any year, indicating a weak relationship between earn-
ings volatility and leverage. This finding is consistent, however, with previous empirical studies
that have often found the effect of earnings volatility to generally be insignificant (Titman and
Wessels, 1988).

The effect of the tax rate is also found to be weak and insignificant in all but one year, indicating
that variations in tax rates across firms do not appear to be a strong driver of leverage. However,
the unimportance of theexistenceof a tax shield in determining leverage should not be inferred
from this result. Finally, the effect of BETA on leverage is found to be significantly positive (in
line with predictions) in three out of six years. Furthermore, BETA is highly significant (to the 1%
level) during the period of the financial crisis (2007–2008), indicating that risk-adjustment was
perhaps an important consideration of leverage decisions during this period.

Overall, Table 3 provides strong support for our theoretical model’s predictions of the impact
of fixed costs on observed optimal leverage ratios.

*** Insert Table 4 about here ***

Finally, we consider the predicted nonlinearities in the dependence of leverage on CMAR-
GIN and SG&A. Table 4 shows the results of regression (25). Providing further support to our
theoretical predictions, we observe very strong evidence of convexity in the contribution margin
relationship; significant to at least the 10% level in all years and to the 1% level in four out of six
years. Additionally, we observe strong evidence of concavity in the fixed cost relationship, more
so in recent years (2009 onwards).

20As a robustness check of this key result, and to address the potential problem of multicollinearity of the two key
regressors CMARGIN and SG&A, we orthogonalised these two variables and re-estimated Eq. (24). Results are
consistent, providing identical signs and similar statistical significance, indicating that our results are not driven by
the relationship between CMARGIN and SG&A. Furthermore, in another unreported regression we also controlled
for industry dummies, finding that the signs and significance of CMARGIN and SG&A remained unchanged. Further
details on these robustness checks are available from the authors upon request.

21It is postulated that the loss in significance is a consequence of DRIFT being a historical measure of a firm’s
growth which has been temporarily deflated by the financial crisis and does not, therefore, correctly reflect manager’s
growth forecasts.
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5. Conclusions

In the context of the trade-off theory of capital structure, existing theoretical modelling pro-
vides contradictory conclusions on the relationship between corporate earnings and optimal finan-
cial leverage. However, strong empirical evidence of an inverse relationship between these two
quantities calls for a reconciliation of theory and evidence. Previous studies have used mean-
reverting earnings to provide such a reconciliation, however the present paper relaxes such strong
assumptions and shows that the relationship need not be process specific and can, instead, be a
direct result of correctly incorporating the effect of fixed operating costs (operating leverage), and
hence the possibility ofnon-financingrelated distress, into project and firm valuations.

Our theoretical model also provides insights into the relationship between fixed costs and finan-
cial leverage, postulating a positive relationship between these two quantities. Empirical analysis
employing data from various cross-sections of S&P 500 firms confirms this relationship and other
theoretical predictions made by our model. Importantly, many results hold true for periods before,
during, and after the global financial crisis, indicating robustness of our empirical findings.

Finally, we note that since operating revenue and cost structures depend heavily on the industry
in which a firm is situated, and noting the empirical finding that industry leverage has been found
to be a strong predictor of firm leverage (Frank and Goyal, 2008), our results in regards to the effect
of fixed costs on leverage may yet provide further insights into the effect of industry membership
on financial leverage. This is currently an avenue of ongoing research.
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Appendix A. Proof that 1
D
∂D
∂x −

1
E
∂E
∂x ≤ 0

Proof. To demonstrate that1D
∂D
∂x −

1
E
∂E
∂x ≤ 0 is the same as demonstrating thatD∂E

∂x − E∂D
∂x ≥ 0 for

a fixed couponR. We note that after substitution of (13) and (16) we have
(

D
∂E
∂x
− E

∂D
∂x

)

(x) = φ(x∗d)
(

(R/r) f ′ℓ (x)[φ(x∗d) − φ(x)] − (R/r)φ′(x)[ fℓ(x
∗
d) − fℓ(x)]

+ (1− b)V(x∗d)[ f ′ℓ (x)φ(x) − fℓ(x)φ′(x)]
)

= φ(x∗d)
(

(R/r)(x− x∗d)[φ′(x) f ′ℓ (ξ1) − φ
′(ξ2) f ′ℓ (x)]

+ (1− b)V(x∗d)[ f ′ℓ (x)φ(x) − fℓ(x)φ′(x)]
)

where we have invoked themean value theoremto rewriteg(x) − g(x∗d) = g′(ξ)(x − x∗d) for some
ξ ∈ (x∗d, x). To proceed further we note that if the functionfℓ is linear inx then f ′

ℓ
(ξ) = f ′

ℓ
(x) for

all ξ, hence the above becomes
(

D
∂E
∂x
− E

∂D
∂x

)

(x) = φ(x∗d)
(

(R/r)(x−x∗d) f ′ℓ (ξ1)[φ
′(x)−φ′(ξ2)]+(1−b)V(x∗d)[ f ′ℓ (x)φ(x)− fℓ(x)φ′(x)]

)

.

We can furthermore see that ifφ′ is increasing (henceφ is convex) thenφ′(x) − φ′(ξ2) ≥ 0 and
hence the first term is positive.

To prove the positivity of the second term we note that whenx = x∗d this term is zero by (14).
We can furthermore demonstrate that

( f ′ℓ (x)φ(x) − fℓ(x)φ′(x))′ = − fℓ(x)φ′′(x)

which, by our assumption of the convexity ofφ, indicates that the functionf ′
ℓ
φ− fℓφ′ is increasing

on the intervalx ∈ (x∗d, f −1
ℓ

(0)) and decreasing onx ∈ ( f −1
ℓ

(0),∞). Given these facts and the
uniqueness of the solutionx∗d to (14)—which was proved in Glover and Hambusch (2012)—we
therefore conclude that the second term must remain positive on the intervalx ∈ (x∗d,∞), and the
proof is complete.
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Figure 1: The decomposition of total firm value (solid line). Figure (a) shows the decomposition into equity (dashed
line) and debt (dotted line) and Figure (b) shows the decomposition into unlevered project value (dot-dashed line),
expected benefit from the tax shield (dotted line), and the expected bankruptcy costs (dashed line).NB: base case
parameters areµ = 7%,σ = 40%,λ = 0.4, ρ = 1, r = 5%,τ = 15%,b = 0.5, C = $0.75, andx0 = $2. The value of
the couponRused is the optimal coupon rate for the base case parameters, found to beR∗ = $0.38.
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(a) Optimal coupon vs. contribution margin
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Figure 2: On the left: The dependency of the optimal coupon on the current level ofx (contribution margin) for varying
degrees of operating leverage—C = $0.75 (solid line),C = $ = 0.25 (dotted line),C = $1.25 (dot-dashed line), and
C = $0 (dashed line). On the right: The relationship between the optimal coupon and the degree of operating leverage
C for varying levels of the contribution margin—x = $1 (dashed line),x = $2 (solid line), andx = $3 (dotted line);
for base case parameters.NB: base case parameters areµ = 7%,σ = 40%,λ = 0.4,ρ = 1, r = 5%,τ = 15%,b = 0.5,
C = $0.75, andx0 = $2.
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(a) Financial leverage vs. contribution margin
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Figure 3: On the left: The dependency of the optimal leverage on the current level ofx (contribution margin) for
varying degrees of operating leverage—C = $0.75 (solid line),C = $ = 0.25 (dotted line),C = $1.25 (dot-dashed
line), andC = $0 (dashed line). On the right: The relationship between the optimal leverage and the degree of
operating leverageC for varying levels of the contribution margin—x = $1 (dashed line),x = $2 (solid line), and
x = $3 (dotted line); for base case parameters.NB: base case parameters areµ = 7%,σ = 40%,λ = 0.4, ρ = 1,
r = 5%,τ = 15%,b = 0.5,C = $0.75, andx0 = $2.

Tables

Table 1: Summary statistics for the cross-section of all firms (N = 293) used in at least one of the three two-year
periods.

Variable Median Mean Std. dev. Min Max Skewness Kurtosis

LEVERAGE 0.151 0.195 0.168 0.000 0.943 1.300 4.606
DRIFT 0.100 0.144 0.196 –0.095 2.967 6.367 70.871
SIGMA 0.148 0.213 0.223 0.020 2.409 3.806 24.854
BETA 1.015 1.072 0.481 0.029 3.341 0.803 4.059
TAXRATE 0.350 0.334 0.064 0.000 0.391 –3.655 15.683
ROA 0.153 0.159 0.079 –0.112 0.625 0.635 5.096
CMARGIN 0.334 0.368 0.207 0.000 1.411 1.065 4.960
CMARGINsq 0.111 0.179 0.211 0.000 1.992 3.242 19.601
SG&A 0.178 0.210 0.168 0.002 1.094 1.508 6.406
SG&Asq 0.032 0.072 0.123 0.000 1.196 4.353 29.418

Variables: LEVERAGE=market leverage calculated as the book value of long-term-debt dividend by sum of the
book value of long-term-debt and the market value of equity.
DRIFT= estimated drift rate of the contribution margin time-series under the assumption of GBM dynamics.
SIGMA = estimated volatility (standard deviation) the contribution margin time-series under GBM dynamics.
TAXRATE = pre-interest tax rate (courtesy of Professor John Graham).
BETA = estimated (S&P 500) marketβ of the firm (courtesy of COMPUSTAT).
ROA= return-on-assets, calculated as (EBIT+depreciation)/total assets, our normalised measured of earnings.
CMARGIN (CMARGINsq)= the contribution margin (squared) normalised by total assets.
SG&A (SG&Asq)= the sales, general and admin (squared) normalised by total assets.
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Table 2: Regression results—Eq. (23). Dependent variable= LEVERAGE,t-stats in brackets, and *,**,*** represent
statistical significance at the 10%, 5%, and 1% level, respectively, based on robust (White) standard errors.

Year
Variable Exp. Sign 2006 2007 2008 2009 2010 2011

CONST. 0.3719*** 0.3176*** 0.1971** 0.1960*** 0.3584*** 0.2673***
(4.12) (3.95) (2.20) (3.02) (4.02) (4.35)

DRIFT – –0.2813*** –0.2981*** –0.3628*** –0.2358** –0.1079 –0.0876
(–2.92) (–2.78) (–3.09) (–2.21) (–1.54) (–1.15)

SIGMA – 0.2153** 0.1995** 0.1535* 0.1213 0.0739 0.071
(2.23) (2.05) (1.73) (1.39) (1.13) (0.95)

BETA + –0.0096 0.0349 0.1759*** 0.0741*** 0.0163 0.0512**
(–0.56) (1.62) (6.15) (3.83) (0.63) (2.24)

TAXRATE + –0.3604 –0.1062 0.1838 0.0873 –0.1608 0.0989
(–1.43) (–0.49) (0.93) (0.59) (–0.71) (0.69)

ROA + –0.5790*** –0.8556*** –1.0411*** –0.7068*** –0.8957*** –0.9873***
(–4.82) (–5.38) (–7.85) (–4.17) (–7.41) (–6.66)

# obs 200 200 248 248 258 258
R2 27.25% 29.93% 43.49% 30.39% 27.39% 26.75%
Adj-R2 25.37% 28.12% 42.33% 28.95% 25.95% 25.30%
F-stat 7.439 9.802 37.28 20.49 18.19 16.33
p-val < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 3: Regression results—Eq. (24). Dependent variable= LEVERAGE,t-stats in brackets, and *,**,*** represent
statistical significance at the 10%, 5%, and 1% level, respectively, based on robust (White) standard errors.

Year
Variable Exp. Sign 2006 2007 2008 2009 2010 2011

CONST. 0.4378*** 0.3417*** 0.2564*** 0.2419*** 0.4003*** 0.2907***
(5.04) (4.18) (3.01) (4.00) (4.50) (4.39)

DRIFT – –0.2461*** –0.2768** –0.3324*** –0.2070** –0.0877 –0.0771
(–2.70) (–2.58) (–2.81) (–1.98) (–1.18) (–0.98)

SIGMA – 0.1438 0.1577 0.0959 0.0668 0.0403 0.051
(1.55) (1.57) (1.07) (0.76) (0.57) (0.64)

BETA + –0.0195 0.0355 0.1649*** 0.0738*** 0.0075 0.0466**
(–1.15) (1.63) (5.89) (4.11) (0.29) (2.00)

TAXRATE + –0.4224* –0.1339 0.1425 0.0564 –0.2018 0.073
(–1.79) (–0.61) (0.76) (0.40) (–0.91) (0.50)

CMARGIN – –0.5006*** –0.8027*** –0.9703*** –0.5829*** –0.8204*** –0.9351***
(–4.45) (–4.85) (–7.25) (–3.53) (–6.20) (–5.83)

SG&A + 0.3274** 0.7173*** 0.7978*** 0.3679* 0.6851*** 0.8583***
(2.50) (3.70) (4.88) (1.80) (3.84) (4.20)

# obs 200 200 248 248 258 258
R2 31.78% 30.83% 45.22% 33.67% 28.87% 27.19%
Adj-R2 29.66% 28.68% 43.86% 32.02% 27.17% 25.45%
F-stat 9.512 9.786 35.94 20.96 19.49 15.41
p-val < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
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Table 4: Regression results—Eq. (25). Dependent variable= LEVERAGE,t-stats in brackets, and *,**,*** represent
statistical significance at the 10%, 5%, and 1% level, respectively, based on robust (White) standard errors.

Year
Variable Exp. Sign 2006 2007 2008 2009 2010 2011

CONST. 0.5199*** 0.4485*** 0.3514*** 0.3945*** 0.4962*** 0.3875***
(5.20) (4.72) (3.88) (5.63) (5.43) (5.13)

DRIFT – –0.2213** –0.2419** –0.3189*** –0.1453 –0.0838 –0.0738
(–2.55) (–2.34) (–2.67) (–1.40) (–1.21) (–0.98)

SIGMA – 0.1027 0.1117 0.0652 -0.0169 0.0131 0.0218
(1.09) (1.11) (0.71) (-0.19) (0.19) (0.27)

BETA + –0.018 0.0396* 0.1519*** 0.0615*** 0.0064 0.0512**
(–1.01) (1.84) (5.15) (3.47) (0.24) (2.11)

TAXRATE + –0.4151* –0.133 0.1008 0.0021 –0.2122 0.0688
(–1.87) (–0.56) (0.55) (0.01) (–0.96) (0.50)

CMARGIN – –0.9655*** –1.5997*** –1.2909*** –1.4442*** –1.4883*** –1.7314***
(–3.51) (–6.22) (–6.21) (–5.43) (–7.27) (–7.45)

CMARGINsq + 0.5160** 0.8362*** 0.4323* 1.1188*** 0.9089*** 1.0233***
(2.06) (3.62) (1.85) (4.09) (3.56) (3.55)

SG&A + 0.4335* 1.2135*** 0.7409*** 0.6491** 0.9341*** 1.2897***
(1.92) (5.10) (3.31) (2.24) (4.07) (5.01)

SG&Asq – –0.308 –0.8859*** –0.1418 –0.7282** –0.7639** –1.0454**
(–1.06) (–3.25) (–0.45) (–2.17) (–2.37) (–2.50)

# obs 200 200 248 248 258 258
R2 34.91% 35.43% 46.87% 37.99% 32.54% 30.82%
Adj-R2 32.18% 32.73% 45.09% 35.92% 30.37% 28.59%
F-stat 11.46 11.37 28.75 19.68 18.12 15.54
p-val < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
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