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Abstract 
 
This paper investigates the sensitivity of asset and portfolio price volatility with 
respect to the minimum available trading interval that the price is quoted. The 
objective of the study is to find the theoretical impact of high frequency trading 
on asset and portfolio volatilities, using a simple stochastic model. The paper 
finds that if high frequency trading is available, both asset and portfolio price 
volatility tend to decrease. The result suggests that the regulators who are 
concerned with the volatility induced by high frequency trading should concentrate the 
regulatory effort on the behavioral aspect of the high frequency traders rather than on 
how frequent they trade. 
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1.  Introduction 
 
High frequency trading (HFT hereafter) is generally believed to lower the cost 
of trading, increase the informativeness of quotes, provide liquidity and 
eliminate arbitrage (See Hendershott, Jones and Menkveld, 2010) through fast 
and more frequent trading. The benefits of HFT seem to be clear and generally 
agreed. However there is a controversy over its cost – rise in price volatility. 
Traders often claim that HFT reduces the stock market volatility. The critiques 
of HTF do not agree with this. The criticism is regaining the attention of the 
media and the regulators recently. 
 Searching Financial Times articles with key words “high frequency 
trading volatility” gives plenty of news, articles and blogs that argue for and 
against the claim. There is articles support the claim and point out that 
empirical market volatility has actually gone down. Such articles include 
‘Markets: In search of a fast buck’ on February 19th, 2013, ‘Comment: Some 
HFT myths debunked’ on March 1st, 2013 and ‘FBI joins SEC in computer 
trading probe’ on March 5th, 2013. However there are also articles such as 
‘Scrutiny on high frequency traders’ on September 23rd, 2012, ‘High frequency 
traders’ claims refuted by studies’ on September 30th, 2012, ‘BoE on HFT: A 
large absolute noise contribution’ on December 3rd, 2012 reporting that HFT 
could increase the stock market volatility. There is another argument that may 
be the short term volatility has gone down but the longer term expectation has 
gone up because HFT creates herding behavior. This includes ‘Markets: With 
the volume down’ on February 11th, 2013. Based on above FT articles, we can 
see that the HFT and volatility is related to all sorts of issues including market 
stability, short term and long term expectations, herding behavior and even 
systemic risk. 

There are many academic literatures about the impact of HFT on 
volatility and the findings so far seem to be mixed. Hasbrouck and Saar (2011) 
find that HFT decreases short-term volatility. Zhang (2010) argues that HFT 
increase volatility. Zhang (2010) finds that HFT is positively correlated with 
stock price volatility after controlling for firm fundamental volatility and other 
exogenous determinants of volatility. The paper reports stronger positive 
correlation among the top 3,000 stocks in market capitalization and among 
stocks with high institutional holdings. The positive correlation is stronger 
during periods of high market uncertainty. They also find that HFT is 
negatively related to the market’s ability to incorporate information about firm 
fundamentals into asset prices. Stock prices tend to overreact to fundamental 
news when high-frequency trading is at a high volume. 

Evangelos and Satchit (2012) is concerned that the most of these papers 
make no distinction between the informative and uninformative components of 
volatility. They argue that this would be reason why the results of these papers 
are less conclusive. They analyse the intraday behavior of HFT and its impact 
on aspects of market quality such as liquidity, price discovery and excess 
volatility. They use transactions date set for four UK stocks, over the period of 
a randomly selected week. They find that the ‘passive’ HFTs follow a trading 
strategy consistent with market making and as such their trades have alternating 
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signs and are independent of recent (ten-second) price changes. By contrast, 
‘aggressive’ HFTs exhibit persistence in the direction of their trades and trade 
in line with the recent (ten-second) price trend. They also find that both higher 
price volatility and lower spreads cause HFT activity to increase. Finally, they 
use a tick time specification to examine the impact of HFT activity on 
information-based volatility and excess volatility. The result shows that while 
HFTs have a higher information-to-noise contribution ratio than non-HFTs, 
there are instances where this is accompanied by a large absolute noise 
contribution. 

The joint report of Securities and Exchange Commission (SEC) and the 
Commodity Futures Trading Commission (CFTC), investigating the Flash Crash of 
May 6th, 2010, states “HFTs began to quickly buy and then resell contracts to each 
other – generating a hot-potato volume effect as the same positions were rapidly passed 
back and forth. Between 2:45:13 and 2:45:27, HFTs traded over 27,000 contracts, 
which accounted for about 49 per cent of the total trading volume, while buying only 
about 200 additional contracts net”. From this report, we could see that the regulators 
are concerned with two aspects of HFC. Trading strategy that generated a “hot-potato” 
volume effect and the fast trading which increased the speed and the number of the 
trades. 

It seems that there exists self-selection bias that the trading strategies or 
the styles that are employed by the high frequency traders tend to be more 
volatile. This could be a reason why HFT is blamed to increase the volatility 
although more frequent trading itself does not. In general, HFT consists of two 
components, predetermined algorithmic trading strategy and frequent trading. 
Computerized automated trading system is an essential component of HFT. In 
most of literatures, the impacts from the two are not distinguished. This seems 
to create the controversial arguments. Careful reading of existing literatures 
reveals that most of the existing works focus on the empirical evidences and 
have less emphasis on the possibility that the increase or the decrease in the 
volatility might be due to statistical properties. The focus on empirical 
evidences would be one of reasons why it is hard to distinguish the impact of 
one from that of the other.  

Therefore theoretical investigation would be useful. This paper 
theoretically investigates the relationship between more frequent trading and 
price volatility at asset and portfolio level with a stochastic price process. 
Therefore it could separate the impact of highly frequent trading component of 
HFT from algorithmic trading strategy component. Hence the contributions of 
this paper are clear. 

 
1. It provides a theoretical model that could investigate the properties of 

HFT and brings the discussion to asset and portfolio level from overall 
stock market level. 
 

2. It provides a theoretical support that the availability of more frequent 
trading reduces asset price volatility.  
 

3. The paper investigates HFT in relation to Time Series Momentum 
hence adds to existing Time Series Momentum literatures. 
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4. It theoretically finds that the portfolio that employs technical analysis 

with moving average (MA hereafter) prices would have lower volatility 
when more frequent trading is available. 
 

The primary question to ask in this paper is “Does more frequent trading 
increase the asset and portfolio price volatility, everything else held constant?” 
This is closely related to the issue of holding period / return measurement 
interval. This study investigates from a statistical point of view and provides 
some theoretical evidences using a simple stochastic model. The paper finds 
that the availability of more frequent trading does not necessarily increase the 
price volatility of an asset and a portfolio. Since more frequent trading has clear 
benefits, the paper argues that the regulators should focus on the trading 
behavioral aspect of HFT but be less concerned about the fast trading aspect. 

There are number of points that should be raised regarding the scope and 
the implications of this paper. In order to keep the paper focussed, I address 
such out-of-scope issues and clearly state that this paper does not intend to 
tackle those issues. This would enhance the transparency of the implication of 
the result. First, this study does not intend to investigate any other claimed sins 
of HFT such as the use of dark pool, herding behavior etc. This paper intends to 
validate the claims that HFT increases or decreases the market volatility from a 
theoretical perspective based on a stochastic model. Second, although the 
theoretical investigation shows that HFT decreases the portfolio price volatility, 
it only means that the volatility does not increase in statistical perspective. 
Portfolio volatility could, however, increase due to other aspects of HFT such 
as manager trading more aggressively. But such increase is due to portfolio 
managerial behavior difference, not due to HFT itself. This paper concentrates 
to analyse the impact of more frequent trading only in order to make the 
implication transparent. 

The rest of the paper is organized as follows. Section 2 provides the back 
ground of the study including trading rules definition and time series price 
momentum. Section 3 presents the impact of more frequent trading on asset 
price volatility. Section 4 the impact of more frequent trading on portfolio 
volatility, Section 5 discusses policy implication of the result and Section 6 
concludes the paper. 
 
 

2.  Background 
 
2.1 Trading Rules Definition 
 
This paper employs and expands the definition of the MA oscillator by Brock, 
Lakonishok and LeBaron (1992), which states  
 

“According to the moving average trading rule, buy and sell signals are generated 
by two moving averages of the level of the index – a long-period average and a 
short-period average. In its simplest form this strategy is expressed as buying (or 
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selling) when the short-period moving average rises above (or falls below) the 
long-period moving average. The idea behind computing moving averages it to 
smooth out an otherwise volatile series. When the short-period average exceeds the 
long-period moving average, a trend is considered to be initiated. A very popular 
moving average rule is 1-200, where the short period is one day and the long period 
is 200 days. While numerous variations of this rule are used in practice, we 
attempted to select several of the most popular ones: 1-50, 1-150, 5-150, 1-200, 
and 2-200.” 

 
Hong and Satchell (2013, HS hereafter) use this rule to explain autocorrelation 
amplification in technical analysis and this paper develops a modified version 
of HS model. Let l stands for the time period that the MA is computed for a 
long position and s for the time period that the MA is computed for a short 
position. Hence s > l and they are overlapping. Denote SMA as MA computed 
over time period s and LMA as MA computed over time period l. For example 
at time t, if s = 7 and l = 3, then SMA is computed over time t – 6 to t and LMA 
is computed over time t – 2 to t. In this paper, we classify two opposite MA 
rules with SMA and LMA, MAbull(l,s) and MAbear(l,s). and define that 
MAbull(l,s) rule takes a long position in the asset when SMA > LMA and 
taking no position in the asset when SMA < LMA and MAbear(l,s) rule does 
the opposite. 
 
Definition 1: The MA(l,s) position can be represented as 
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where p(t) is an asset price at time t. The logic behind the MA rule is well 
known, when price penetrates the MA from the below, the bull trend is believed 
to be established and a trader wants to take advantage of this in an expectation 
that there will be further up movements in prices. 
 
2.2 Time Series Price Momentum 
 
This paper will investigate the volatility of price based momentum trading 
strategy, the MA rule. Empirical studies of momentum trading strategies report 
supporting evidence for the profitability, including Brock, Lakonishok and 
LeBaron (1992), Allen and Karjalainen (1999), and Lo, Mamaysky, and Wang 
(2000). These results suggest that the trading strategy beats the market in risk 
neutral terms, hence it is popular. Majority of existing momentum literatures 
focus on the relative performance of securities in the cross-section. HFT could 
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involve more than one exchange and takes advantage of cross sectional price 
discrepancies. Such cross sectional analysis could be an interesting topic of 
research but is out of the paper’s scope. 

There is another type of momentum that could be investigated, time series 
momentum. Moskowitz, Ooi, and Pedersen (2012) argue “Time series 
momentum is the momentum within asset price process. It is related to but 
different from the phenomenon known as ‘momentum’ in the finance literature, 
which is primarily cross-sectional in nature. The momentum literature focuses 
on the relative performance of securities in the cross-section, finding that 
securities that recently outperformed their peers over the past three to 12 
months continue to outperform their peers on average over the next month. 
Rather than focus on the relative returns of securities in the cross-section, time 
series momentum focuses purely on a security’s own past return.” 

Time series momentum is often investigated along with technical analysis. 
Zhu and Zhou (2009) analyse the usefulness of technical analysis, specifically 
the MA trading rule from an asset allocation perspective. They show that, when 
stock returns are predictable, technical analysis adds value to commonly used 
allocation rules that invest fixed proportions of wealth in stocks. Bajgrowicz 
and Sxaillet (2012) investigates the apparent historical success of technical 
trading rules on daily prices of the Dow Jones Industrial Average index 
from1897 to 2011, and they use the false discovery rate (FDR) as a new 
approach to data snooping. This paper also investigates time series momentum 
and identifies the statistical impact of highly frequent trading scheme applied to 
price momentum trading strategy based on MAs. 
 
 

3. Impact of the More Frequent Trading on Asset 
Volatility 

 
Let de-meaned log price process ttptq µ−= )(log)(  has distribution

( )2,0~)( σtq . And denote the autocorrelation between )(tq  and )( htq +  as 
)(hAρ . Assume the de-meaned log price process q(t), follows the Ornstein 

Uhlenbeck process. 
 

)2()()()( tdWdttqtdq σθ +−=  
 
where θ and σ are the parameters of the OU process. Furthermore, assume σ > 0, 
and W(t) denotes a Wiener process. The OU process is often used to model 
mean reverting financial processes. Mean reverting processes are naturally 
attractive to model financial asset prices because of the economic argument that 
when prices are ‘too high’, demand will reduce, and supply will increase prices, 
producing a counter-balancing effect. When prices are ‘too low’ the opposite 
will occur, again pushing prices back towards some form of long term mean. 
This is the primary reason why I employ the OU process to the current de-
meaned process, hence the process will revert to zero. These and more general 
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stochastic differential equation systems have been analysed econometrically by 
Sargan (1974), Phillips (1974) and Robinson (1977).  

Another reason for using the OU process is that the equations can be 
explicitly solved and there are exact solutions for discretized versions of this 
model. The use of this process has been heavily studied by Bergstrom. (1990). 
This process has been successfully used by many others including Lo and Wang 
(1995), Kramer and Richter (2007) and Onalan (2009) in studying financial 
asset price process. The analytical solution for this this process is well known. 
 

( ) )3()()0()(
0

)( udWeqehtq
ht

utht ∫
+

−−+− +=+ θθ σ  

 
h is the time interval that price is reported hence is the minimum time interval 
that a trading could occur. I call h the minimum trading interval. h could be 
seen as a return measurement interval because it is the minimum time interval 
that returns could be measured. This links the current paper to existing 
intervalling effect literatures such as Dimson (1979), Corhay (1992) and Handa, 
Kothari, and Wasley (1993). Equation (4) has an exact AR(1) representation. 
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where subscript A indicates asset. The subscript A is included to make 
notational distinction of asset return from trading strategy return, which will be 
introduced later. The means and variances of q(t) can be written as 
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Note that the implicit assumption to keep the variances positive is that the de-
meaned price process is mean reverting or θ > 0. This is a reasonable 
assumption. I next calculate time t conditional variance and covariance of de-
meaned price. 
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Therefore the autocorrelation of asset return can be expressed as 
 

[ ] )6()()(),( h
AAA ehhtqtqCorr θρ −==+  

 
Proposition 1: The sensitivity of variance of q(t) with respect to h is 
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Conditioning on time zero, Proposition 1 has two important implications. [1] It 
shows that smaller minimum trading interval or the availability of more 
frequent trading reduces the asset volatility. This is consistent with the common 
belief of the financial industry. Statistically speaking, HFT could reduce the 
volatility. [2] As the measurement interval, h, approaches to zero, the asset 
volatility collapses to zero 
 
 

4. Impact of the More Frequent Trading on Portfolio 
 
4.1 Technical Trading Rule Model 
 
This section applies one of the most popular trading rules based on technical 
analysis, the MA rule, on the previously investigated price process to analyze 
the impact of shorter trading interval on portfolio volatility. This would be 
meaningful because the trading strategy or the algorithmic automated trading 
part of the HFT is held constant. This effectively controls any other aspects of 
HFT than the trading frequency and allows investigating the impact on 
volatility from shorter trading interval only. 

As previously noted the MAs are defined as 
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The model used in this section is a modified version of the model built in HS. 
 
Definition 2: The critical value of a MA(s,l)) rule is defined as 
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The derivation of definition 2 is in Appendix A2 of HS. The strategy takes a 
long position if C(s,l;t) becomes more than 1 and liquidate the position if C(s,l;t) 
becomes less than 1. As noted in HS, when the MA rule is applied based on a 
positive trending price process, the exit point (where the manager liquidates a 
long position due to the current price penetrating the MA from above) will 
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)(
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always be higher than the entry point hence the return is always positive. 
However, the manager is simply picking up the price trend and the same return 
can also be made with a buy and hold strategy. This is less interesting. In order 
to separate the impact of momentum from the market-wide trend, I use the de-
meaned log price, which also has useful statistical properties for estimation. 
The ‘de-meaned’ MA rule also has a simple price interpretation as shown below. 

Assuming stationarity in the second moments, the bivariate distribution 
of C(t) and C(t-1) can be expressed as, 
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where Ω  is the (s × s) covariance matrix of Q(t) and CΩ  is (s × s) 
covariance matrix between Q(t) and Q(t-1). For now, we do not assume 
anything about the covariance matrix but simply note that the autocovariance is 
not zero. Lemma 1 of HS shows that the MA (l,s) rule based on a de-meaned 
log price is equivalent to buying a unit of an asset when 
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Under the current assumptions, C(s,l;t) has a log normal distribution. 
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Let )(kAρ  be the asset price autocorrelation in log prices between k 
periods. And let 1)0( =Aρ  and )()( kk AA −= ρρ  since we assume stationarity 
in second moments. Note that Ω  is a covariance matrix of Q(t), which is a 
vector of q(i) values (i = 1 … t). mΩ  is a covariance matrix between Q(t) and 
Q(t-1) 

In Proposition 3 of HS, the variance for C(s,l;t) and the covariance 
between C(s,l;t) and C(s,l;t-m), when l = 0, is derived as 
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The proof is in Appendix A6 of HS and I include the proof in Appendix A1 of 
this paper since HS has not been published yet. l is assumed to be 1 for 
calculation simplicity. This assumption would not alter the mathematical result 
and is a practical one since today’s price is often compared against historical 
moving average price when the MA rule is used. When the MA rule is 
practically applied, managers often take the shorter time period as 1 (l =1). 
When l = 1, it is referred to as the “MA crossover rule”. This case can be 
treated as a special case since it makes the equation significantly simpler by 
getting rid of the first of both double summation terms.  
 
4.2 Impact on a Portfolio of Technical Trading Strategy 
 
This section applies the OU model of de-meaned price process to the technical 
trading rule model and investigates the variance of the trading strategy with 
respect to the minimum trading interval, h. Here h is the interval that prices are 
reported. Therefore the interval that SMA is computed, s, varies proportionate 
to the size of h. For 10 day MA and when h is 1 week, s = 2, when h is 1 day, s 
= 10, when h is 1 hour, s = 65, when h is 1 minute, s = 3900 and when h is 1 
second, s = 234000. Therefore s depends on the size of h and s should be 
denoted as s(h) to note its dependency on h. More specifically, given a constant 
length of s, s', s(h) could be modelled as s(h) = s'/h. Here, s' could have any time 
unit, nano-second, second, minute, hours, day etc., as long as it is consistent 
with the time unit of h. Since s is dependent on h, a and b becomes dependent 
on h as well. h could take any positive non-zero value up to 10 days in this 
example 
 
Remark 1: The variance of the technical trading strategy critical value, when 
the underlying asset price follows the OU model and assuming l = 1, can be 
written as  
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The proof of Remark 1 is in Appendix A2.  
 
Proposition 2: The sensitivity of variance of the trading strategy critical value, 
C(t), with respect to h is positive 
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The proof of Proposition 2 is in Appendix A3. Proposition 2 indicates when de-
meaned asset price follows a mean-reverting process, a portfolio that employ 
technical analysis and take advantage of time series momentum have smaller 
portfolio price or level volatility as more frequent trading becomes available. 
Note that the volatility here is the level volatility against to the return volatility.  

It is often argued that HFT firms are market makers and provide liquidity 
to the market which has lowered volatility and helped narrow Bid-offer spreads, 
making trading and investing cheaper for other market participants. This paper 
adds another reason why HFT activities would lower the price volatility, hence 
contributing to the existing literatures of HFT. This result does make any 
indication about the effect of the automated trading system on volatility. The 
trading strategy is controlled. It is more likely to increase the volatility if they 
are programmed to trade more aggressively than the average traders in the 
market. 

These opposing impacts would cause such controversial arguments 
regarding the impact of HFT on volatility. This paper shows that, at least from 
the statistical point of view, more frequent aspect of HFT reduces the price 
volatility. 
 
4.3 Influence of Time Series Momentum 
 
Equation (12) can be decomposed into three factors. 
 
Remark 2: The variance of the technical trading strategy critical value, when 
the underlying asset price follows the OU model and assuming l = 1, can be 
decomposed into three components  
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The proof of Remark 2 is omitted. Term 1 is the volatility induced from the short term 
MA. Since l = 1, the short term MA is the current price. Term 2 is the volatility due to 
the long term MA and Term 3 is the interaction term. They are all proportionate to the 
asset price volatility, which indicate that all components of the trading strategy 
volatility are based on the volatility of the underlying asset. Term 1 and 2 are positive 
while Term 3 is negative. From equation (6) we find that Term 2 includes sum of 
autocorrelations from first lag to (s(h) – 2) th lag. Term 3 also includes sum of 
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autocorrelations from first lag to (s(h) – 1) th lag. This indicates that the covariance 
structure of lagged de-meaned prices influences the current variance of the trading 
strategy. This makes logical sense since the trading strategy employs two MAs with 
different lengths, hence taking advantage of time series momentum. Note that for large 
s(h), The absolute value of Term 2 is larger than the absolute value of Term 3. 
 Remark 2 indicates that the effect of time series momentum is cumulative in the 
current trading strategy volatility. The sum of autocorrelation is the magnitude of time 
series momentum. If all lagged covariances of q(t) and q(t+h) are positive but 
diminishing as the order of lag increases, this mean the impact of a shock on price is 
consistent but diminishes over time. There is no price reversal and the sum of 
autocorrelation would be equivalent to the sample Ljung – Box statistics with the 
sample lag of s(h) – 1 or s(h) – 2. In this case, the trading strategy volatility is 
positively related with the length of the longer period MA, s’. If there exist price 
reversal as many behavioral finance literatures report, then the evolution of the trading 
strategy volatility with respect to s’ would not be monotonic. As previously explained s’ 
is different from s(h). The unit of s’ is time, it can be seconds, minutes, hours, days etc. 
The unit of s(h) is the minimum interval that the price is quoted, h. For various h, s’ is 
constant while s(h) is variant. 
 
 

5. Policy Implications 
 
This paper builds a simple model when the asset price follows a stochastic process to 
investigate the price volatilities of the asset and the portfolio that employs technical 
analysis. The paper finds that the volatility falls as the minimum trading interval 
decreases. This could imply that the claimed increase in volatility might be due to the 
behavioral difference of the traders rather than more frequent trading. Although the 
theoretical result is consistent with what many traders claim, it is also consistent with 
the FT article, ‘Markets: With the volume down’, which argue that may be the 
short term volatility has gone down but the longer term expectation has gone up 
because HFT creates herding behavior. It does not necessarily be the herding 
behavior only. It could be self-selection bias of traders that traders who employ 
more volatile trading strategies prefer HFT. Investigating and comparing the 
behavior of high frequency traders with the rest would be useful and this could 
be an interesting future research topic. 

The result of this paper suggests that in regulating HFT activities, the more 
frequent trading aspect of the HFT should be separated from algorithmic code that 
determines the trading behavior. While fast and more frequent trading has clear 
benefits of lowering the cost of trading, increasing the informativeness of quotes, 
providing liquidity and eliminating arbitrage, the result suggests that there is no 
theoretical evidence that it increases the price volatility. 

Flash Crash of May 6th, 2010 could be a good example for this. The U.S. SEC 
and CFTC concluded that the cause was a single sale of $4.1 billion in futures 
contracts by a mutual fund, identified as Waddell & Reed Financial, in an aggressive 
attempt to hedge its investment position. Such large sales created a selling pressure in 
the market and the pre-coded algorithmic trading systems amplified the selling 
pressure, which was transferred from the futures markets to the stock market by 
arbitrageurs who started to buy the cheap futures contracts but sell cash shares on 
markets like the New York Stock Exchange. The computerized trading system on the 
stock market shut down as the sharp rise in buying and selling activities were detected. 



13 

 

This led to the abrupt drop in prices of individual stocks and other financial 
instruments. From the SEC/CFTC report itself: 

 
The combined selling pressure from the sell algorithm, HFTs, and other traders drove 
the price of the E-Mini S&P 500 down approximately 3% in just four minutes from the 
beginning of 2:41 pm through the end of 2:44 pm. During this same time cross-market 
arbitrageurs who did buy the E-Mini S&P 500, simultaneously sold equivalent amounts 
in the equities markets, driving the price of SPY (an exchange-traded fund which 
represents the S&P 500 index) also down approximately 3%. 

Still lacking sufficient demand from fundamental buyers or cross-market 
arbitrageurs, HFTs began to quickly buy and then resell contracts to each other – 
generating a “hot-potato” volume effect as the same positions were rapidly passed back 
and forth. Between 2:45:13 and 2:45:27, HFTs traded over 27,000 contracts, which 
accounted for about 49 per cent of the total trading volume, while buying only about 
200 additional contracts net 

 
This extraordinary event was due to the algorithmic or automated feature, not high 
frequency feature of HFT. The selling pressure due to the lack of liquidity (demand) 
was the reason for the crash. The hot-potato volume effect and HFT taking 49 per cent 
of trading volume were due to the herding effect created by algorithms that acted in the 
same style simultaneously. This is not due to more frequent trading. The lack of 
liquidity was induced because the trading algorithms were coded in similar style, 
which created the herding behavior. This has not much to do with fast trading. The 
crash happened between 2:45:13 and 2:45:27, took 14 seconds. This is due to fast 
trading. Even if fast trading would have not been available, the same crash would have 
happened as long as the algorithms acted as they were coded. Of course, it could be 
argued that traders would have prevented the trade if this took a longer time. But then 
it could be also argued that traders could have programmed the trading strategies 
accordingly. Again the debate brings us back to the traders’ behavior and trading 
algorithms, not more frequent trading. 

From the last statement of the quoted report, we find that the regulators are 
concerned with fast and frequent trading. The result of this paper suggests that the 
regulators who are concerned with rise in volatility due to HFT should not focus how 
fast or frequent trades occur. They should concentrate their regulatory effort to find and 
control which aspects of the trading algorithms created such behavior. In short, the 
regulators who are concerned with the volatility induced by HFT should concentrate 
regulatory effort on the behavior and the characteristics of high frequency traders 
rather than on how frequent they trade. 
 
 

6.  Conclusion 
 
Whether HFT increases volatility or not is a very controversial issue. Traders 
often claim that HFT reduces the volatility. The critiques claim the opposite. 
Regulators seem to be concerned with both algorithmic of trading strategy and 
the fast frequent trading. Most of existing literatures investigate the issue 
empirically. Since algorithmic trading is a necessary condition for fast trading, 
empirical investigation would not be able to distinguish the impact of one from 
that of the other. 

This paper theoretically investigates asset and portfolio level volatility 
when more frequent trading is available, using the Ornstein-Uhlenbeck model. 
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The paper separates the effect of trading strategy difference on volatility from 
the effect from fast frequent trading. The paper finds that for an asset that the 
de-meaned asset price process follows the OU process and for a portfolio that 
employ the moving average rule based on such asset, availability of HFT 
decreases both asset and portfolio price volatility. 

The contributions of this paper can be summarized as below. 1. It 
provides a theoretical model that could investigate the properties of HFT and 
brings the discussion to asset and portfolio level from overall stock market level. 
2. It provides a theoretical support that the availability of more frequent trading 
reduces asset price volatility. 3. The paper investigates HFT in relation to Time 
Series Momentum hence adds to existing Time Series Momentum literatures. 4. 
It theoretically finds that the portfolio that employs technical analysis with 
moving average prices would have lower volatility when more frequent trading 
in available 

The paper implies that one should separate the impact of more frequent 
trading from that of automated trading system in terms of regulating HFT 
activities since more frequent trading does not necessarily induce additional 
volatility. 
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7 Appendix 
 
A1. Proof of Proposition of HS 
 
Note that this is Appendix A6 of HS. Decompose Ω  into four pieces where 
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A2. Derivation of Remark 1 
 
The autocovariance of the technical trading strategy is 
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The variance of the technical trading strategy can be computed as the 
autocovariance when there is no lag, hence m = 0 in equation (). Substituting m 
= 0 and applying 1)0( =Aρ , we get 
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Denoting that a, b and s are dependent on h, we have 
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A3. Proof of Proposition 2 
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